Medical Design and Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • Med Tech Resources
    • DeviceTalks Tuesdays
    • Digital Editions
    • eBooks
    • Manufacturer Search
    • Medical Device Handbook
    • MedTech 100 Index
    • Podcasts
    • Print Subscription
    • The Big 100
    • Webinars / Digital Events
    • Whitepapers
    • Video
  • 2022 Leadership in MedTech
    • 2022 Leadership Voting!
    • 2021 Winners
    • 2020 Winners
  • Women in Medtech

New Approach Uses Ultrasound to Measure Fluid in the Lungs

March 22, 2017 By North Carolina State University

A team of engineering and medical researchers has found a way to use ultrasound to monitor fluid levels in the lung, offering a noninvasive way to track progress in treating pulmonary edema – fluid in the lungs – which often occurs in patients with congestive heart failure. The approach, which has been demonstrated in rats, also holds promise for diagnosing scarring, or fibrosis, in the lung.

“Historically, it has been difficult to use ultrasound to collect quantitative information on the lung, because ultrasound waves don’t travel through air- and the lung is full of air,” says Marie Muller, an assistant professor of mechanical engineering at North Carolina State University and co-author of a paper on the work. “However, we’ve been able to use the reflective nature of air pockets in the lung to calculate the amount of fluid in the lung.”

When ultrasound waves travel through the body, most of each wave’s energy passes through the tissue. But some of that energy is reflected as an echo. By monitoring these echoes, an ultrasound scanner is able to create an image of the tissue that the waves passed through. All of this happens in microseconds.

But when ultrasound waves hit air, all of the energy is reflected – which is why ultrasound images of the lung tend to look like a big, grey blob, with little useful information for health-care providers. And while there are some techniques that allow users to determine if a patient has pulmonary edema, those techniques still can’t tell how much fluid there is.

This is where Muller’s team comes in.

When ultrasound waves hit air pockets in the lung, or alveoli, they scatter. Those scattered waves hit other air pockets, scattering them further. This process of bouncing around means that it takes an ultrasound’s echo much longer to bounce back to the ultrasound machine – though it’s still measured in microseconds. And that is why the lung looks like a grey blob to the ultrasound scanner.

But no two ultrasound waves take the same path – they may bounce in different directions as they travel through the lung. So their echoes take different amounts of time to return to the scanner. By looking at all of the echoes, and how those echoes change over time, Muller and her collaborators were able to calculate the extent to which the space between the air pockets was filled with fluid.

To test their approach, the researchers conducted two sets of experiments using rats and rat lung tissue.

In the first set of experiments, researchers used rat lung tissue that had been injected with saline solution to mimic fluid-filled lung tissue. The new approach allowed researchers to quantify the amount of fluid in the lung to within one milliliter.

In the second set of experiments, researchers found significant differences between fluid-filled and healthy lungs in rats. Specifically, the researchers were calculating the mean distance between two “scattering events” – or how far an ultrasound wave traveled between two air pockets.

For fluid-filled lungs, the mean distance was 1,040 micrometers, whereas the mean distance in healthy lungs was only 332 micrometers.

“This is important, because one could potentially track this mean distance value as a way of determining how well pulmonary edema treatment is working,” Muller says.

The technique makes use of conventional ultrasound scanning equipment, though the algorithm used by the researchers would need to be incorporated into the ultrasound software.

“Altogether, the cost would likely be comparable to existing ultrasound monitoring applications,” Muller says.

The researchers are currently developing two trials: a clinical study in humans and one in a veterinary clinic.

 

The paper, “Characterization of the lung parenchyma using ultrasound multiple scattering,” is published in the journal Ultrasound in Medicine & Biology. Lead author of the paper is Kaustav Mohanty, a Ph.D. student at NC State. The paper was co-authored by John Blackwell and Dr. Thomas Egan of the University of North Carolina at Chapel Hill’s Department of Surgery.

Related Articles Read More >

Dexcom One
How Dexcom’s portfolio goes beyond highly-anticipated next-gen G7
A portrait of Stryker executive Siddarth Satish
How Stryker includes users for product design in the digital age
A Medtronic HVAD pump opened up to show the inner workings
Medtronic investigates HVAD pump welds after patient deaths
Galien Foundation 2022 nominees
18 of the world’s most innovative medical technologies

DeviceTalks Weekly.

May 13, 2022
Our Pre-Post-DeviceTalks Boston episode, also MedtronicTalks replay with Gastro CMO Austin Chiang
See More >

MDO Digital Edition

Digital Edition

Subscribe to Medical Design & Outsourcing. Bookmark, share and interact with the leading medical design engineering magazine today.

MEDTECH 100 INDEX

Medtech 100 logo
Market Summary > Current Price
The MedTech 100 is a financial index calculated using the BIG100 companies covered in Medical Design and Outsourcing.
DeviceTalks

DeviceTalks is a conversation among medical technology leaders. It's events, podcasts, webinars and one-on-one exchanges of ideas & insights.

DeviceTalks

New MedTech Resource

Medical Tubing

Enewsletter Subscriptions

Enewsletter Subscriptions

MassDevice

Mass Device

The Medical Device Business Journal. MassDevice is the leading medical device news business journal telling the stories of the devices that save lives.

Visit Website
MDO ad
Medical Design and Outsourcing
  • MassDevice
  • DeviceTalks
  • MedTech 100 Index
  • Medical Tubing + Extrusion
  • Drug Delivery Business News
  • Drug Discovery & Development
  • Pharmaceutical Processing World
  • R&D World
  • About Us/Contact
  • Advertise With Us
  • Subscribe to Print Magazine
  • Subscribe to E-newsletter
  • Attend our Monthly Webinars
  • Listen to our Weekly Podcasts
  • Join our DeviceTalks Tuesdays Discussion

Copyright © 2022 WTWH Media, LLC. All Rights Reserved. Site Map | Privacy Policy | RSS

Search Medical Design & Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • Med Tech Resources
    • DeviceTalks Tuesdays
    • Digital Editions
    • eBooks
    • Manufacturer Search
    • Medical Device Handbook
    • MedTech 100 Index
    • Podcasts
    • Print Subscription
    • The Big 100
    • Webinars / Digital Events
    • Whitepapers
    • Video
  • 2022 Leadership in MedTech
    • 2022 Leadership Voting!
    • 2021 Winners
    • 2020 Winners
  • Women in Medtech