Medical Design and Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Supplies and Components Index
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • MedTech Resources
    • Medtech Events in 2025
    • The 2024 Medtech Big 100
    • Medical Device Handbook
    • MedTech 100 Index
    • Subscribe to Print Magazine
    • DeviceTalks
    • Digital Editions
    • eBooks
    • Educational Assets
    • Manufacturer Search
    • Podcasts
    • Print Subscription
    • Webinars / Digital Events
    • Whitepapers
    • Voices
    • Views
    • Video
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Women in Medtech
  • Advertise
  • Subscribe

New Method to Test Breast Lesions Could Better Detect Cancer, Save Money by Reducing Repeat Biopsies

May 31, 2013 By AACR

A newly developed, single-step Raman spectroscopy algorithm has the potential to simultaneously detect microcalcifications and enable diagnosis of the associated breast lesions with high precision, according to data published in Cancer Research, a journal of the American Association for Cancer Research.

“Nearly 1.6 million breast biopsies are performed and roughly 250,000 new breast cancers are diagnosed in the Unites States each year,” said Ishan Barman, Ph.D., postdoctoral fellow at the Massachusetts Institute of Technology in Cambridge and the study’s lead author. “If 200,000 repeat biopsies were avoided, even by a conservative estimate, the U.S. health care system could save $1 billion per year.”

X-ray mammography is currently the only accepted routine screening method for early detection of breast cancer, but it cannot accurately distinguish whether microcalcifications (microscopic areas of calcium accumulation) are associated with benign or malignant breast lesions, according to Barman. Most patients, therefore, undergo core needle biopsy to determine if the microcalcifications are associated with malignancy, but the technique fails to retrieve microcalcifications in about 15 to 25 percent of patients. This results in nondiagnostic or false-negative biopsies, requiring the patient to undergo repeat, often surgical biopsy.

According to the researchers, the newly developed algorithm exhibited positive and negative predictive values of 100 percent and 96 percent, respectively, for the diagnosis of breast cancer with or without microcalcifications. The algorithm also showed an overall accuracy of 82 percent for classification of the samples into normal, benign or malignant lesions.

“There is an unmet clinical need for a tool that could minimize the number of X-rays and biopsy procedures. This tool could shorten procedure time; reduce patient anxiety, distress and discomfort; and prevent complications such as bleeding into the biopsy site after multiple biopsy passes,” said Barman. “Our study demonstrates the potential of Raman spectroscopy to simultaneously detect microcalcifications and diagnose associated lesions with a high degree of accuracy, providing real-time feedback to radiologists during the biopsy procedures.”

The researchers used a portable clinical Raman spectroscopy system to obtain Raman spectra from breast tissue biopsy specimens of 33 women. They collected Raman spectra from 146 tissue sites within the samples, including 50 normal tissue sites, 77 lesions with microcalcifications and 19 lesions without microcalcifications. Notably, they acquired all spectra within 30 minutes of sample removal.

Barman and colleagues fitted the obtained spectra into a model that identifies the different type and texture of various components of the breast tissue. They then developed a single-step Raman algorithm to distinguish normal breast tissue, breast cancer with and without microcalcifications, and other benign breast lesions including fibrocystic change and fibroadenoma.

In addition, the majority of breast cancers diagnosed using the one-step Raman algorithm were ductal carcinoma in situ, the most common lesion associated with microcalcifications, which is a challenge to diagnose using existing methods, according to Barman.

Related Articles Read More >

An illustration of Embolization Inc.'s Nitinol Enhanced Device (NED).
This nitinol vascular embolization device has another shape memory material up its sleeve
A photo of nitinol, a nickel-titanium alloy used for medical devices such as stents, heart valves, catheters and orthopedics.
What is nitinol and where is it used?
July 2025 edition: The Surgical Robotics issue, featuring Capstan Medical, J&J and Zimmer Biomet
A photo of Capstan Medical's mitral valve implant, which uses nitinol.
Capstan Medical’s R&D head discusses the heart valve and robotics startup’s tech, engineering challenges and solutions, advice for others in medtech and how to join his team
“mdo
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest medical device business news, application and technology trends.

DeviceTalks Weekly

See More >

MDO Digital Edition

Digital Edition

Subscribe to Medical Design & Outsourcing. Bookmark, share and interact with the leading medical design engineering magazine today.

MEDTECH 100 INDEX

Medtech 100 logo
Market Summary > Current Price
The MedTech 100 is a financial index calculated using the BIG100 companies covered in Medical Design and Outsourcing.
DeviceTalks

DeviceTalks is a conversation among medical technology leaders. It's events, podcasts, webinars and one-on-one exchanges of ideas & insights.

DeviceTalks

New MedTech Resource

Medical Tubing

MassDevice

Mass Device

The Medical Device Business Journal. MassDevice is the leading medical device news business journal telling the stories of the devices that save lives.

Visit Website
MDO ad
Medical Design and Outsourcing
  • MassDevice
  • DeviceTalks
  • MedTech100 Index
  • Medical Tubing + Extrusion
  • Medical Design Sourcing
  • Drug Delivery Business News
  • Drug Discovery & Development
  • Pharmaceutical Processing World
  • R&D World
  • About Us/Contact
  • Advertise With Us
  • Subscribe to Print Magazine
  • Subscribe to our E-Newsletter
  • Listen to our Weekly Podcasts
  • Join our DeviceTalks Tuesdays Discussion

Copyright © 2025 WTWH Media, LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media LLC. Site Map | Privacy Policy | RSS

Search Medical Design & Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Supplies and Components Index
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • MedTech Resources
    • Medtech Events in 2025
    • The 2024 Medtech Big 100
    • Medical Device Handbook
    • MedTech 100 Index
    • Subscribe to Print Magazine
    • DeviceTalks
    • Digital Editions
    • eBooks
    • Educational Assets
    • Manufacturer Search
    • Podcasts
    • Print Subscription
    • Webinars / Digital Events
    • Whitepapers
    • Voices
    • Views
    • Video
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Women in Medtech
  • Advertise
  • Subscribe