Medical Design and Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • Med Tech Resources
    • DeviceTalks Tuesdays
    • Digital Editions
    • eBooks
    • Manufacturer Search
    • Medical Device Handbook
    • MedTech 100 Index
    • Podcasts
    • Print Subscription
    • The Big 100
    • Webinars / Digital Events
    • Whitepapers
    • Video
  • 2022 Leadership in MedTech
    • 2022 Leadership Voting!
    • 2021 Winners
    • 2020 Winners
  • Women in Medtech

New research shows how silver could impact gold-standard flexible gadgets

May 12, 2016 By Abigail Esposito

  • Silver nanowires are an ideal material for current and future flexible touch-screen technologies
  • Traditional touchscreen material is facing supply shortfall, as well as being unfit for flexible devices
  • Material can be manufactured easily, using less energy than current material
Silver in nanotechnology

This study showed how silver nanowire films have emerged as the strongest competitor, due to transmittances and conductivities which can match and readily exceed those of ITO. Image source: www.nanowerk.com

Research published in the journals Materials Today Communications and Scientific Reports has described how silver nanowires are proving to be the ideal material for flexible, touch-screen technologies while also exploring how the material can be manipulated to tune its performance for other applications. Currently, touch screen devices mainly rely on electrodes made from indium tin oxide (ITO), a material that is expensive to source, expensive to process and very brittle.

A team from the University of Surrey (led by Professor Alan Dalton) and in collaboration with M-SOLV Ltd, a touch-sensor manufacturer based in Oxford, looked to alternative materials to overcome the challenges of ITO, which is suffering from supply uncertainty. Alternative materials investigated as ITO replacements have included graphene, carbon nanotubes and random metal nanowire films. This study showed how silver nanowire films have emerged as the strongest competitor, due to transmittances and conductivities which can match and readily exceed those of ITO. This is a material that consists of wires which are over a thousand times thinner than a human hair, that form an interconnected conductive network.

“Our research hasn’t just identified silver nanowires as a viable replacement touchscreen material, but has gone one step further in showing how a process called ‘ultrasonication’ can allow us to tailor performance capabilities,” said Matthew Large, the first author on the research published in Scientific Reports. “By applying high frequency sound energy to the material we can manipulate how long the nanosized ‘rods’ of silver are. This allows us to tune how transparent or how conductive our films are, which is vital for optimising these materials for future technologies like flexible solar cells and roll-able electronic displays.”

In a paper published last month in Materials Today Communications, the same team, showed how silver nanowires can be processed using the same laser ablation technique commonly used to manufacture ITO devices. Using this technique, the team produced a fully operating five inch multi-touch sensor, identical to those typically used in smartphone technology. They found it performed comparably to one based on ITO, but it used significantly less energy to produce.

“Not only does this flexible material perform well, we have shown that it is a viable alternative to ITO in practical devices,” said Dalton. “The fact we are able to produce devices using similar methods as currently in use, but in a less energy-intensive way is an exciting step towards flexible gadgets that do not just open the door for new applications, but do so in a much greener way.”

The team, now based at the University of Sussex, is now looking to develop the scalability of the process to make it more industrially viable. One limiting factor is the current cost of silver nanowires. Funded by Innovate UK and EPSRC, the team are collaborating with M-SOLV and a graphene supplier Thomas Swan to use a nanowire and graphene combination in the electrodes to markedly reduce the cost.

University of Surrey
www.surrey.ac.uk

M-SOLV
www.m-solv.com

Related Articles Read More >

MedTrace Pharma's P3 automated delivery system for 15-O water in action
MedTrace Pharma moves forward on 15 O-water imaging tech
Ariste Medical co-founder Lisa Jennings
Ariste Medical co-founder sees great potential for drug-coated implants and orthopedics
What is microscale 3D printing? Lessons learned from Mayo Clinic
Annoviant
NIH funds Annoviant heart implant materials tech that can grow with children

DeviceTalks Weekly.

May 27, 2022
Quick message - No DTW podcast, but plenty else to listen to over this weekend and next week.
See More >

MDO Digital Edition

Digital Edition

Subscribe to Medical Design & Outsourcing. Bookmark, share and interact with the leading medical design engineering magazine today.

MEDTECH 100 INDEX

Medtech 100 logo
Market Summary > Current Price
The MedTech 100 is a financial index calculated using the BIG100 companies covered in Medical Design and Outsourcing.
DeviceTalks

DeviceTalks is a conversation among medical technology leaders. It's events, podcasts, webinars and one-on-one exchanges of ideas & insights.

DeviceTalks

New MedTech Resource

Medical Tubing

Enewsletter Subscriptions

Enewsletter Subscriptions

MassDevice

Mass Device

The Medical Device Business Journal. MassDevice is the leading medical device news business journal telling the stories of the devices that save lives.

Visit Website
MDO ad
Medical Design and Outsourcing
  • MassDevice
  • DeviceTalks
  • MedTech 100 Index
  • Medical Tubing + Extrusion
  • Drug Delivery Business News
  • Drug Discovery & Development
  • Pharmaceutical Processing World
  • R&D World
  • About Us/Contact
  • Advertise With Us
  • Subscribe to Print Magazine
  • Subscribe to E-newsletter
  • Attend our Monthly Webinars
  • Listen to our Weekly Podcasts
  • Join our DeviceTalks Tuesdays Discussion

Copyright © 2022 WTWH Media, LLC. All Rights Reserved. Site Map | Privacy Policy | RSS

Search Medical Design & Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • Med Tech Resources
    • DeviceTalks Tuesdays
    • Digital Editions
    • eBooks
    • Manufacturer Search
    • Medical Device Handbook
    • MedTech 100 Index
    • Podcasts
    • Print Subscription
    • The Big 100
    • Webinars / Digital Events
    • Whitepapers
    • Video
  • 2022 Leadership in MedTech
    • 2022 Leadership Voting!
    • 2021 Winners
    • 2020 Winners
  • Women in Medtech