Medical Design and Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • Med Tech Resources
    • Subscribe to Print Magazine
    • DeviceTalks Tuesdays
    • Digital Editions
    • eBooks
    • Manufacturer Search
    • Medical Device Handbook
    • MedTech 100 Index
    • Podcasts
    • Print Subscription
    • The Big 100
    • Webinars / Digital Events
    • Whitepapers
    • Video
  • 2022 Leadership in MedTech
    • 2022 Leadership Voting!
    • 2021 Winners
    • 2020 Winners
  • Women in Medtech

NIH awards $15M for 3D human tissue models

September 13, 2017 By Danielle Kirsh

lung-on-chip NIH

This lung-on-a-chip serves as an accurate model of human lungs to test for drug safety and efficacy. [Image from Wyss Institute for Biologically Inspired Engineering, Harvard University]

The National Institutes of Health has announced 13 two-year awards, totaling $15 million a year, for hospitals and universities to develop 3D human tissue models.

The funding will go toward the first phase of a five-year program.

Even though pre-clinical studies using cell and animal research models are promising, more than 60% of investigational drugs fail in human trials because of ineffectiveness. The NIH hopes to change that with the funding by developing 3D microphysiological system platforms that replicate human disease. The platforms, known as tissue chips, are able to support living cells and human tissues to replicate complex biological functions of human organs and systems, creating a better way to test potential drug efficacy.

The Tissue Chip for Disease Modeling and Efficacy Testing awards will help scientists understand how diseases work to be able to predict more accurately how certain drugs will affect patients.

“The goal is for these tissue chips to provide more accurate platforms to understand diseases, and to be more predictive of the human response to drugs than current research models, thereby improving the success rate of candidate drugs in human clinical trials,” Christopher P. Austin, National Center for Advancing Translational Sciences’ director, said in a press release.

NCATS started a Tissue Chip program in 2012 to create micro physiological systems to study the safety and toxicity of drugs in a faster and more effective way. The tissue chips are able to be combined to create a human body-on-a-chip to give researchers an easier way to study investigational drugs and therapeutic agents in the body before it goes to clinical trial.

The new awards will enable researchers to study a variety of common and rare diseases like rheumatoid arthritis, kidney disease, human influenza A viral infection, amyotrophic lateral sclerosis (ALS), hereditary hemorrhagic telangiectasia and arrhythmogenic cardiomyopathy.

Once the first phase is complete, the second phase of awards will partner researchers and pharmaceutical companies together to determine the effectiveness of drugs in validated disease models.

The awardees of the grants include Brigham and Women’s Hospital, Cedars-Sinai Medical Center, Columbia University, Duke University, Harvard University, Northwestern University, University of California Davis, University of California Irvine, University of Pittsburgh, University of Rochester, University of Washington and Vanderbilt University.

(Learn from some of the medical device industry’s top executives and experts at DeviceTalks Boston on Oct. 2.)

Related Articles Read More >

Minnetronix Medical's MindsEye expandable port is a cone-shaped device for deep brain access
Contract manufacturer Minnetronix Medical launches its first in-house product, MindsEye
Prix Galien USA 2022 nominees
The 24 best medical device innovations of 2022
A lateral flow assay test for measuring COVID-19 immunity
COVID-19 immunity test developers at MIT seek diagnostic manufacturer
A small, thin sticker with a button that says press to start
Blue Spark’s TempTraq catches fevers faster. Fever prediction is next.

DeviceTalks Weekly.

August 12, 2022
DTW – Medtronic’s Mauri brings years of patient care to top clinical, regulatory, scientific post
See More >

MDO Digital Edition

Digital Edition

Subscribe to Medical Design & Outsourcing. Bookmark, share and interact with the leading medical design engineering magazine today.

MEDTECH 100 INDEX

Medtech 100 logo
Market Summary > Current Price
The MedTech 100 is a financial index calculated using the BIG100 companies covered in Medical Design and Outsourcing.
DeviceTalks

DeviceTalks is a conversation among medical technology leaders. It's events, podcasts, webinars and one-on-one exchanges of ideas & insights.

DeviceTalks

New MedTech Resource

Medical Tubing

Enewsletter Subscriptions

Enewsletter Subscriptions

MassDevice

Mass Device

The Medical Device Business Journal. MassDevice is the leading medical device news business journal telling the stories of the devices that save lives.

Visit Website
MDO ad
Medical Design and Outsourcing
  • MassDevice
  • DeviceTalks
  • MedTech100 Index
  • Medical Tubing + Extrusion
  • Medical Design Sourcing
  • Drug Delivery Business News
  • Drug Discovery & Development
  • Pharmaceutical Processing World
  • R&D World
  • About Us/Contact
  • Advertise With Us
  • Subscribe to Print Magazine
  • Subscribe to E-newsletter
  • Attend our Monthly Webinars
  • Listen to our Weekly Podcasts
  • Join our DeviceTalks Tuesdays Discussion

Copyright © 2022 WTWH Media, LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media LLC. Site Map | Privacy Policy | RSS

Search Medical Design & Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • Med Tech Resources
    • Subscribe to Print Magazine
    • DeviceTalks Tuesdays
    • Digital Editions
    • eBooks
    • Manufacturer Search
    • Medical Device Handbook
    • MedTech 100 Index
    • Podcasts
    • Print Subscription
    • The Big 100
    • Webinars / Digital Events
    • Whitepapers
    • Video
  • 2022 Leadership in MedTech
    • 2022 Leadership Voting!
    • 2021 Winners
    • 2020 Winners
  • Women in Medtech