Medical Design and Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Supplies and Components Index
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • MedTech Resources
    • Medtech Events in 2025
    • The 2024 Medtech Big 100
    • Medical Device Handbook
    • MedTech 100 Index
    • Subscribe to Print Magazine
    • DeviceTalks
    • Digital Editions
    • eBooks
    • Educational Assets
    • Manufacturer Search
    • Podcasts
    • Print Subscription
    • Webinars / Digital Events
    • Whitepapers
    • Voices
    • Views
    • Video
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Women in Medtech
  • Advertise
  • Subscribe

NIST Method Evaluates Response to Oxidation in Live Cells

February 13, 2014 By Michael E. Newman, National Institute of Standards and Technology (NIST)

NMR data showing the levels of reduced glutathione (GSH) and oxidized glutathione (GSSG) over time in yeast cells at rest (top) and under oxidative stress (bottom). The cells at rest have almost no GSSG (dark blue shades) but it spikes briefly when they are stressed, while GSH declines. This type of analysis may one day help to measure cell health. Credit: Reipa/NISTResearchers at the National Institute of Standards and Technology (NIST) have developed a new method for accurately measuring a key process governing a wide variety of cellular functions that may become the basis for a “health checkup” for living cells.

The NIST technique measures changes in a living cell’s internal redox (reduction-oxidation) potential, a chemistry concept that expresses the favorability of reactions in which molecules or atoms either gain or lose electrons. Redox reactions are important to cell chemistry because they regulate many genes and the proteins they produce. An accurate measure of redox potential can provide insight into how well these genes are working, and in turn, whether or not the activities they control—such as differentiation and growth—are functioning normally.

To assess this, scientists customarily measure the levels of both the reduced (electrons added) and oxidized (electrons lost) forms of glutathione, a peptide the cell uses as an antioxidant. Glutathione in cells is found predominately in the reduced state, known as GSH, but some gets converted to the oxidized form, known as GSSG. A high amount of GSSG indicates a cell has suffered oxidative stress, a process believed to contribute to cell aging, breakdown, malfunction (such as cancer) and eventual death.

Unfortunately, traditional methods of obtaining this data are akin to an autopsy. The only way to measure the relative amounts of GSH and GSSG within a cell has been to rupture its membrane—killing it—and then examine the released contents.

The NIST team developed a way to measure GSH and GSSG levels in living cells in real time using nuclear magnetic resonance (NMR)spectroscopy, a technique that images individual molecules similar to how doctors use magnetic resonance imaging (MRI) to noninvasively view organs. “NMR has been shown in recent years to be a powerful tool for studying metabolites as they operate in living cells, so we felt it could work well as a noninvasive way to do the same for GSH and GSSG,” says NIST research chemist Vytas Reipa.

In their proof-of-concept experiment,* the NIST researchers grew a mutant strain of yeast cells that could not manufacture their own glutathione in a medium containing the peptide tagged with a nitrogen isotope. This ensured that the only glutathione available in the cells would be detectable using NMR during its conversion from GSH to GSSG.

GSH and GSSG levels were measured by NMR for both cells at rest and under oxidative stress, and then used to calculate the changing intracellular redox potentials over time. The results showed, for the first time ever, that redox potential can serve as an indicator of how cells perform in response to oxidation in real time.

“We know that when oxidation tips the balance toward too much GSSG, we get a redox potential shifted more to the positive than it should be,” Reipa explains. “A healthy cell compensates by reversing the process and when that happens, the redox potential shifts back to its original value. A sick cell, on the other hand, does not compensate and the value stays positive. Therefore, an accurate in-cell measurement of redox potential could one day help us determine how well cells can recover from oxidative stress and, as a result, give us a picture of the cell’s overall health.”

Currently, the NIST researchers are exploring other NMR-detectable peptides involved in reduction and oxidation processes to conduct studies with mammalian cells.

Related Articles Read More >

An illustration of Embolization Inc.'s Nitinol Enhanced Device (NED).
This nitinol vascular embolization device has another shape memory material up its sleeve
A photo of nitinol, a nickel-titanium alloy used for medical devices such as stents, heart valves, catheters and orthopedics.
What is nitinol and where is it used?
July 2025 edition: The Surgical Robotics issue, featuring Capstan Medical, J&J and Zimmer Biomet
A photo of Capstan Medical's mitral valve implant, which uses nitinol.
Capstan Medical’s R&D head discusses the heart valve and robotics startup’s tech, engineering challenges and solutions, advice for others in medtech and how to join his team
“mdo
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest medical device business news, application and technology trends.

DeviceTalks Weekly

See More >

MDO Digital Edition

Digital Edition

Subscribe to Medical Design & Outsourcing. Bookmark, share and interact with the leading medical design engineering magazine today.

MEDTECH 100 INDEX

Medtech 100 logo
Market Summary > Current Price
The MedTech 100 is a financial index calculated using the BIG100 companies covered in Medical Design and Outsourcing.
DeviceTalks

DeviceTalks is a conversation among medical technology leaders. It's events, podcasts, webinars and one-on-one exchanges of ideas & insights.

DeviceTalks

New MedTech Resource

Medical Tubing

MassDevice

Mass Device

The Medical Device Business Journal. MassDevice is the leading medical device news business journal telling the stories of the devices that save lives.

Visit Website
MDO ad
Medical Design and Outsourcing
  • MassDevice
  • DeviceTalks
  • MedTech100 Index
  • Medical Tubing + Extrusion
  • Medical Design Sourcing
  • Drug Delivery Business News
  • Drug Discovery & Development
  • Pharmaceutical Processing World
  • R&D World
  • About Us/Contact
  • Advertise With Us
  • Subscribe to Print Magazine
  • Subscribe to our E-Newsletter
  • Listen to our Weekly Podcasts
  • Join our DeviceTalks Tuesdays Discussion

Copyright © 2025 WTWH Media, LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media LLC. Site Map | Privacy Policy | RSS

Search Medical Design & Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Supplies and Components Index
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • MedTech Resources
    • Medtech Events in 2025
    • The 2024 Medtech Big 100
    • Medical Device Handbook
    • MedTech 100 Index
    • Subscribe to Print Magazine
    • DeviceTalks
    • Digital Editions
    • eBooks
    • Educational Assets
    • Manufacturer Search
    • Podcasts
    • Print Subscription
    • Webinars / Digital Events
    • Whitepapers
    • Voices
    • Views
    • Video
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Women in Medtech
  • Advertise
  • Subscribe