Medical Design and Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Supplies and Components Index
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • MedTech Resources
    • Medtech Events in 2025
    • The 2024 Medtech Big 100
    • Medical Device Handbook
    • MedTech 100 Index
    • Subscribe to Print Magazine
    • DeviceTalks
    • Digital Editions
    • eBooks
    • Manufacturer Search
    • Podcasts
    • Print Subscription
    • Webinars / Digital Events
    • Whitepapers
    • Voices
    • Video
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Women in Medtech
  • Advertise
  • Subscribe

Organ-On-Chip Technology Enters Next Stage As Experts Test Hepatitis B Virus

February 21, 2018 By Imperial College London

Scientists at Imperial College London have become the first in the world to test how pathogens interact with artificial human organs.

Artificial human organs, or organ-on-chip technologies, simulate a whole organ’s cell make up and physiology. They act as alternatives to animal models in drug safety testing, but until now they have not been used to test how infectious diseases interact with the organs.

Now, researchers from Imperial are using this technology to determine how pathogens interact with artificial organs. They hope it will help us to better understand the resulting disease and develop new treatments.

In particular, the team used an artificial liver — originally developed at MIT, the University of Oxford, and biotechnology company CN Bio Innovations — and tested its response to hepatitis B virus infection.

“This is the first time that organ-on-a-chip technology has been used to test viral infections,”says Dr. Marcus Dorner, lead author from Imperial’s School of Public Health. “Our work represents the next frontier in the use of this technology. We hope it will ultimately drive down the cost and time associated with clinical trials, which will benefit patients in the long run.”

Primary hepatocytes grown in 3D microfluidic “liver-on-a-chip” platform following infection with hepatitis B virus. (Image credit: Marcus Dorner/Imperial College London)

Hepatitis B virus is currently incurable, and affects over 257 million people worldwide. Development of a cure has been slow because there is no model system in which to test potential therapies.

However, the Imperial team showed that the liver-on-a-chip technology could be infected with hepatitis B virus at physiological levels and had similar biological responses to the virus as a real human liver, including immune cell activation and other markers of infection. In particular, this platform uncovered the virus’s intricate means of evading inbuilt immune responses — a finding which could be exploited for future drug development.

Although this technology is in its early stages, the researchers suggest that it might eventually enable patients to have access to new types of personalised medicine. Rather than using generic cells lines, doctors in the future could potentially use cells from an actual patient and test how they would react to certain drugs for their infection, which may make treatments more targeted and effective.

Organs-on-chips house live human cells on scaffolds that are physiologically, mechanically, and structurally similar to the emulated organ. Drugs or viruses are passed through the cells via tubes that simulate blood flow through the body. The living cells used in tests last much longer on the chip than in traditional laboratory methods, and require lower infection doses compared to traditionally used model systems.

Hepatitis B is very infectious and causes liver cancer and cirrhosis. Thus, the researchers say, it was the best virus to use for the first test as its interactions with the immune system and liver cells are complex, but with devastating consequences for the tissues.

“Once we begin testing viruses and bacteria on other artificial organs, the next steps could be to test drug interaction with the pathogens within the organ-on-chip environment,” Dorner says.

Other organs-on-chips currently in use include the heart, kidneys, and lungs. The authors say using these artificial organs for human pathogens could help researchers to better understand the mechanisms of infectious disease, and to observe how the virus and cells in the organ interact. This could lead to new drugs and treatments for a number of diseases affecting different organs in the future.

Related Articles Read More >

An illustration showing the Artedrone Sasha thrombectomy catheter approaching a blood clot.
This microrobot system is designed to float inside a stroke patient for autonomous thrombectomy
A photo of nitinol, a nickel-titanium alloy used for medical devices such as stents, heart valves, catheters and orthopedics.
What is nitinol and where is it used?
An illustration showing the Edwards Lifesciences Sapien M3 transcatheter mitral valve replacement (TMVR) system's valve being placed in the heart. [Image courtesy of Edwards Lifesciences]
The top nitinol cardiac medtech news of 2025 (so far)
A photo showing the Dualto Energy System's modular design with two generators stacked for two users at a time.
What J&J MedTech’s new Dualto says about the OR of the future — and Ottava
“mdo
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest medical device business news, application and technology trends.

DeviceTalks Weekly

See More >

MDO Digital Edition

Digital Edition

Subscribe to Medical Design & Outsourcing. Bookmark, share and interact with the leading medical design engineering magazine today.

MEDTECH 100 INDEX

Medtech 100 logo
Market Summary > Current Price
The MedTech 100 is a financial index calculated using the BIG100 companies covered in Medical Design and Outsourcing.
DeviceTalks

DeviceTalks is a conversation among medical technology leaders. It's events, podcasts, webinars and one-on-one exchanges of ideas & insights.

DeviceTalks

New MedTech Resource

Medical Tubing

MassDevice

Mass Device

The Medical Device Business Journal. MassDevice is the leading medical device news business journal telling the stories of the devices that save lives.

Visit Website
MDO ad
Medical Design and Outsourcing
  • MassDevice
  • DeviceTalks
  • MedTech100 Index
  • Medical Tubing + Extrusion
  • Medical Design Sourcing
  • Drug Delivery Business News
  • Drug Discovery & Development
  • Pharmaceutical Processing World
  • R&D World
  • About Us/Contact
  • Advertise With Us
  • Subscribe to Print Magazine
  • Subscribe to our E-Newsletter
  • Listen to our Weekly Podcasts
  • Join our DeviceTalks Tuesdays Discussion

Copyright © 2025 WTWH Media, LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media LLC. Site Map | Privacy Policy | RSS

Search Medical Design & Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Supplies and Components Index
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • MedTech Resources
    • Medtech Events in 2025
    • The 2024 Medtech Big 100
    • Medical Device Handbook
    • MedTech 100 Index
    • Subscribe to Print Magazine
    • DeviceTalks
    • Digital Editions
    • eBooks
    • Manufacturer Search
    • Podcasts
    • Print Subscription
    • Webinars / Digital Events
    • Whitepapers
    • Voices
    • Video
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Women in Medtech
  • Advertise
  • Subscribe