Medical Design and Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • Med Tech Resources
    • DeviceTalks Tuesdays
    • Digital Editions
    • eBooks
    • Manufacturer Search
    • Medical Device Handbook
    • MedTech 100 Index
    • Podcasts
    • Print Subscription
    • The Big 100
    • Webinars / Digital Events
    • Whitepapers
    • Video
  • 2022 Leadership in MedTech
    • 2022 Leadership Voting!
    • 2021 Winners
    • 2020 Winners
  • Women in Medtech

Paralyzed monkeys walk again with wireless ‘brain-spine interface’

November 9, 2016 By Sarah Faulkner

Paralyzed monkeys walk again with wireless 'brain-spine interface'Swiss scientists from the Swiss Federal Institute of Technology helped paralyzed monkeys walk again with a neuroprosthetic interface that acts as a wireless bridge between the brain and the spine, according to a study published today in Nature. 

Researcher suggested that their method for regaining control of non-functioning limbs could one day lead to paralyzed people being able to walk again.

“The link between the decoding of the brain and the stimulation of the spinal cord – to make this communication exist – is completely new,” neurosurgeon Jocelyne Bloch, from the Lausanne University Hospital, told Reuters. “For the first time, I can imagine a completely paralyzed patient able to move their legs through this brain-spine interface.”

The team told the news outlet that they have started small feasibility studies in humans. But neuroscientist Gregoire Courtine of the Swiss Federal Institute of Technology cautioned that “it may take several years before this intervention can become a therapy for humans.”

According to the study, the interface works by collecting brain activity correlated to walking movements and relaying that information to the spinal cord, somewhere below the injury, using electrodes that stimulate neural pathways and activate leg muscles.

The team reported successfully treating two rhesus monkeys, each with paralysis in one leg as a result of a partial spinal cord lesion. One of the monkeys regained partial use of its leg within the 1st week of treatment, without training. The other took about 2 weeks to recover to the same point.

“We developed an implantable, wireless system that operates in real-time and enabled a primate to behave freely, without the constraint of tethered electronics,” said Courtine. “We understood how to extract brain signals that encode flexion and extension movements of the leg with a mathematical algorithm. We then linked the decoded signals to the stimulation of specific hotspots in the spinal cord that induced the walking movement.”

Simone Di Giovanni, a specialist in restorative neuroscience at Imperial College London, said the group’s results were “solid, very promising and exciting” also added a note of caution.

“In principle this is reproducible in human patients,” he said. “The issue will be how much this approach will contribute to functional recovery that impacts on the quality of life. This is still very uncertain.”

Related Articles Read More >

Johnson & Johnson J&J DePuy Synthes
Surgeon wins $20M verdict against J&J’s DePuy Synthes
What happens when bionic eye implants suddenly go dark?
Ossur power knee
Össur launches next-gen Power Knee
Cleveland Clinic bionic arm Paul Marasco Zachary Thumser
Cleveland Clinic reports bionic arm breakthrough

DeviceTalks Weekly.

May 20, 2022
DeviceTalks Boston Post-Game – Editors’ Top Moments, Insulet’s Eric Benjamin on future of Omnipod 5
See More >

MDO Digital Edition

Digital Edition

Subscribe to Medical Design & Outsourcing. Bookmark, share and interact with the leading medical design engineering magazine today.

MEDTECH 100 INDEX

Medtech 100 logo
Market Summary > Current Price
The MedTech 100 is a financial index calculated using the BIG100 companies covered in Medical Design and Outsourcing.
DeviceTalks

DeviceTalks is a conversation among medical technology leaders. It's events, podcasts, webinars and one-on-one exchanges of ideas & insights.

DeviceTalks

New MedTech Resource

Medical Tubing

Enewsletter Subscriptions

Enewsletter Subscriptions

MassDevice

Mass Device

The Medical Device Business Journal. MassDevice is the leading medical device news business journal telling the stories of the devices that save lives.

Visit Website
MDO ad
Medical Design and Outsourcing
  • MassDevice
  • DeviceTalks
  • MedTech 100 Index
  • Medical Tubing + Extrusion
  • Drug Delivery Business News
  • Drug Discovery & Development
  • Pharmaceutical Processing World
  • R&D World
  • About Us/Contact
  • Advertise With Us
  • Subscribe to Print Magazine
  • Subscribe to E-newsletter
  • Attend our Monthly Webinars
  • Listen to our Weekly Podcasts
  • Join our DeviceTalks Tuesdays Discussion

Copyright © 2022 WTWH Media, LLC. All Rights Reserved. Site Map | Privacy Policy | RSS

Search Medical Design & Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • Med Tech Resources
    • DeviceTalks Tuesdays
    • Digital Editions
    • eBooks
    • Manufacturer Search
    • Medical Device Handbook
    • MedTech 100 Index
    • Podcasts
    • Print Subscription
    • The Big 100
    • Webinars / Digital Events
    • Whitepapers
    • Video
  • 2022 Leadership in MedTech
    • 2022 Leadership Voting!
    • 2021 Winners
    • 2020 Winners
  • Women in Medtech