Medical Design and Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • Med Tech Resources
    • DeviceTalks Tuesdays
    • Digital Editions
    • eBooks
    • Manufacturer Search
    • Medical Device Handbook
    • MedTech 100 Index
    • Podcasts
    • Print Subscription
    • The Big 100
    • Webinars / Digital Events
    • Whitepapers
    • Video
  • 2022 Leadership in MedTech
    • 2022 Leadership Voting!
    • 2021 Winners
    • 2020 Winners
  • Women in Medtech

Printable Biotechnology

October 14, 2013 By Karlsruhe Institute of Technology

Cells, biological circuits, and individual biomolecules organize themselves and interact with the environment. Use of these capabilities in flexible and economically efficient biotechnological production systems is in the focus of the “Molecular Interaction Engineering” (MIE) project. It is the objective to develop printed biological circuits and catalysts for biologico-technical hybrid systems. MIE will be funded with about EUR 3.5 million by the BMBF.

The capabilities of biological systems are based on specific interactions of molecular components. Due to their molecular fitting accuracy, for instance, enzymes allow for certain chemical reactions only. Some proteins bind via specific molecular interfaces to the DNA or other proteins and control processes in complex organisms. Sensors respond to defined molecular signals from the environment. The MIE project focuses on interactions of molecules, technical interfaces, and surrounding solvents.

“Transfer of complex biological mechanisms to printable systems may result in innovative biotechnologies that might be the basis of a number of industrial applications,” Professor Jürgen Hubbuch, project coordinator at KIT, explains. However, conventional, continuous evolution of biological molecules reaches its limits. The key to innovative developments is the specific, adjusted construction of the interaction of complex biomolecules and fusion of these units with technical interfaces. This requires close cooperation of biology, engineering, chemistry, and physics.

The “Molecular Interaction Engineering” (MIE) project combines methods of biotechnology, structural biology, materials sciences, process engineering, and computer simulation. Work is aimed at developing innovative, flexible, and economically efficient biotechnological production systems for molecules. These might then be used in biohybrid systems integrating biological and electronic components. Biohybrid systems allow for new applications in food technology, molecular biology, medical diagnostics, and pharmaceutical industry.

KIT’s Institute of Process Engineering in Life Sciences (BLT), the Institute of Functional Interfaces (IFG), the Institute of Microstructure Technology (IMT), the Institute of Nanotechnology (INT), the Institute of Toxicology and Genetics (ITG), the Institute of Thermal Process Engineering – Thin Film Technology (TVT-TFT), and the KIT Young Investigator Group “Biohybrid Nanoarrays for Biotechnological and Biomedical Applications” participate in MIE. In 2013, the project is funded with about EUR 3.5 million by the Federal Ministry of Education and Research (BMBF) for a period of five years. A second funding package of EUR 1.6 million has been announced for 2014.

The MIE Helmholtz Research Network was initiated by KIT, Forschungszentrum Jülich (FZJ), and Helmholtz-Zentrum Geesthacht (HZG) under the Biotechnology 2020+ strategy process of BMBF. The research network is one of four large-scale projects of the four large German non-university research organizations (Fraunhofer Society, Helmholtz Association, Leibniz Association, Max Planck Society) that are to be funded under the Biotechnology 2020+ initiative. Within the framework of the above strategy process, German research organizations agreed on a memorandum of understanding for the interdisciplinary development of a next generation of biotechnological processes.

Related Articles Read More >

Engineer inspecting artificial hip joint parts in quality control department in orthopaedic factory
Deburring and finishing for beautiful, functional medical devices
A Medtronic HVAD pump opened up to show the inner workings
FDA designates new Medtronic HVAD pump implant recall as Class I
Dexcom One
How Dexcom’s portfolio goes beyond highly-anticipated next-gen G7
A portrait of Stryker executive Siddarth Satish
How Stryker includes users for product design in the digital age

DeviceTalks Weekly.

June 24, 2022
How innovative design, commercial strategy is building Cala Trio’s bioelectronic medicine market
See More >

MDO Digital Edition

Digital Edition

Subscribe to Medical Design & Outsourcing. Bookmark, share and interact with the leading medical design engineering magazine today.

MEDTECH 100 INDEX

Medtech 100 logo
Market Summary > Current Price
The MedTech 100 is a financial index calculated using the BIG100 companies covered in Medical Design and Outsourcing.
DeviceTalks

DeviceTalks is a conversation among medical technology leaders. It's events, podcasts, webinars and one-on-one exchanges of ideas & insights.

DeviceTalks

New MedTech Resource

Medical Tubing

Enewsletter Subscriptions

Enewsletter Subscriptions

MassDevice

Mass Device

The Medical Device Business Journal. MassDevice is the leading medical device news business journal telling the stories of the devices that save lives.

Visit Website
MDO ad
Medical Design and Outsourcing
  • MassDevice
  • DeviceTalks
  • MedTech 100 Index
  • Medical Tubing + Extrusion
  • Drug Delivery Business News
  • Drug Discovery & Development
  • Pharmaceutical Processing World
  • R&D World
  • About Us/Contact
  • Advertise With Us
  • Subscribe to Print Magazine
  • Subscribe to E-newsletter
  • Attend our Monthly Webinars
  • Listen to our Weekly Podcasts
  • Join our DeviceTalks Tuesdays Discussion

Copyright © 2022 WTWH Media, LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media LLC. Site Map | Privacy Policy | RSS

Search Medical Design & Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • Med Tech Resources
    • DeviceTalks Tuesdays
    • Digital Editions
    • eBooks
    • Manufacturer Search
    • Medical Device Handbook
    • MedTech 100 Index
    • Podcasts
    • Print Subscription
    • The Big 100
    • Webinars / Digital Events
    • Whitepapers
    • Video
  • 2022 Leadership in MedTech
    • 2022 Leadership Voting!
    • 2021 Winners
    • 2020 Winners
  • Women in Medtech