Medical Design and Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Supplies and Components Index
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • MedTech Resources
    • Medtech Events in 2025
    • The 2024 Medtech Big 100
    • Medical Device Handbook
    • MedTech 100 Index
    • Subscribe to Print Magazine
    • DeviceTalks
    • Digital Editions
    • eBooks
    • Manufacturer Search
    • Podcasts
    • Print Subscription
    • Webinars / Digital Events
    • Whitepapers
    • Voices
    • Video
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Women in Medtech
  • Advertise
  • Subscribe

Producing Hyperpolarized Xenon Gas on a Microfluidic Chip

June 16, 2014 By Rachel Berkowitz, Berkeley Lab

In this experimental set-up, unpolarized xenon gas goes in and hyperpolarized xenon gas emerges from a microfluidic chip when the gas becomes polarized through spin exchange with optically pumped rubidium atoms in the chip.While big machines were once the stuff that scientific dreams are made of, analytical spectroscopy instrumentation has trended to smaller products that are portable, affordable, and fit into locations far removed from a standard laboratory, such as the back of an ambulance or inside a chemical reactor.

“We are starting to follow that trend with NMR (nuclear magnetic resonance),” says Daniel Kennedy, a PhD candidate at the University of California (UC) Berkeley who works in the research group of Alexander Pines, a senior faculty scientist with Berkeley Lab’s Materials Science Division, and UC Berkeley’s Glenn T. Seaborg Professor of Chemistry.

Shrinking the hardware to get away from multi-million dollar facilities is not the only issue with which Kennedy and Vikram Bajaj, a principal investigator in Alex Pines’ Berkeley Lab NMR group, are concerned.

While NMR is a leading technology for “teasing out components of a chemical mixture” and determining the structure of proteins at atomic resolution, it nonetheless struggles with signal strength and signal-to-noise ratio.

To these ends, Bajaj and Kennedy, along with Scott Seltzer, Hattie Ring at Berkeley Lab and colleagues at Boulder’s National Institute of Standards and Technology have developed a technology by which hyperpolarized xenon gas (129Xe) is produced on a microfluidic chip, providing a contrast agent capable of enhanced signal with a small, portable device.

A paper describing this research has been published in Nature Communications. The paper is titled “Optical hyperpolarization and NMR detection of 129Xe on a microfluidic chip.” Co-authors are Ricardo Jimenez-Martinez, Daniel Kennedy, Michael Rosenbluh, Elizabeth Donley, Svenja Knappe, Scott Seltzer, Hattie Ring and John Kitching.

Vikram Bajaj (left) and Alexander Pines are exploring the use of hyperpolarized xenon gas as a contrasting agent for NMR. (Credit: Roy Kaltschmidt)NMR relies on polarizing the nuclear spins within a sample such that the net magnetic field that the spins produce can be detected. Polarization is typically induced by a powerful superconducting magnet. Achieving a high degree of polarization is one limit on NMR sensitivity and the ability of instruments to detect a high degree of spectral resolution and information regarding structure, dynamics, reaction state, and chemical environment of molecules.

But hyperpolarization of a gas – that is, polarization far beyond thermal equilibrium conditions – allows for a greatly enhanced NMR signal. Owing to the ease with which it may be placed in a non-equilibrium spin polarization state, 129Xe has become a valuable contrast agent in NMR and Magnetic Resonance Imaging (MRI) experiments, the imaging cousin to the spectral NMR.

“Xenon itself is an NMR recorder; it is extremely sensitive to its magnetic environment because it has a huge number of easily polarized electrons, giving large NMR responses to small changes in its environment,” explains Kennedy. “Hyperpolarization increases the signal by several orders of magnitude and can detect micromolar concentrations.”

“We’ve used hyperpolarization on larger scales to look at the internal structure of porous materials and for molecular imaging applications that may eventually be useful for the early detection of cancer,” he adds.

However, the large-scale and non-portable nature of 129Xe hyperpolarization hardware precludes its integration into microfluidic platforms, such as have found utility in the miniaturization of numerous analytical techniques.

Bajaj, Kennedy, and their team developed a microfabricated source of hyperpolarized 129Xe using standard microfabrication techniques, combined onto a single chip that can be fully integrated into NMR instrumentation.

“This demonstrates that we can produce hyperpolarized Xenon on microfluidic devices that cost a few hundred dollars and are fairly small, instead of relying on lab-scale instruments costing hundreds of thousands of dollars” adds Kennedy. The goal with this project, as with anything microfluidic, is to make the technology small, cheap, and portable, while using less sample volume and producing less waste.

While the hyperpolarization produced by the rudimentary device shows three-to-five orders of magnitude improvement on regular polarization, the process still needs to be optimized. Next steps will be to use the fully integrated microfluidic chip in a biosensor device.

This research was supported by the U.S. Department of Energy’s Office of Science.

Related Articles Read More >

An image of Abbott's Infinity deep brain stimulation (DBS) implants and leads.
How Abbott developed the first-of-its-kind Infinity DBS system
Axoft Fleuron brain-computer interface BCI probe
Axoft makes Fleuron BCI material available for purchase, inks license deal with Stanford
An illustration showing the Edwards Lifesciences Sapien M3 transcatheter mitral valve replacement (TMVR) system's valve being placed in the heart. [Image courtesy of Edwards Lifesciences]
The top nitinol cardiac medtech news of 2025 (so far)
An illustration showing the Edwards Lifesciences Sapien M3 transcatheter mitral valve replacement (TMVR) system's valve being placed in the heart. [Image courtesy of Edwards Lifesciences]
Q&A with Darshin Patel, who led the Edwards Lifesciences Sapien M3 TMVR system’s development
“mdo
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest medical device business news, application and technology trends.

DeviceTalks Weekly

See More >

MDO Digital Edition

Digital Edition

Subscribe to Medical Design & Outsourcing. Bookmark, share and interact with the leading medical design engineering magazine today.

MEDTECH 100 INDEX

Medtech 100 logo
Market Summary > Current Price
The MedTech 100 is a financial index calculated using the BIG100 companies covered in Medical Design and Outsourcing.
DeviceTalks

DeviceTalks is a conversation among medical technology leaders. It's events, podcasts, webinars and one-on-one exchanges of ideas & insights.

DeviceTalks

New MedTech Resource

Medical Tubing

MassDevice

Mass Device

The Medical Device Business Journal. MassDevice is the leading medical device news business journal telling the stories of the devices that save lives.

Visit Website
MDO ad
Medical Design and Outsourcing
  • MassDevice
  • DeviceTalks
  • MedTech100 Index
  • Medical Tubing + Extrusion
  • Medical Design Sourcing
  • Drug Delivery Business News
  • Drug Discovery & Development
  • Pharmaceutical Processing World
  • R&D World
  • About Us/Contact
  • Advertise With Us
  • Subscribe to Print Magazine
  • Subscribe to our E-Newsletter
  • Listen to our Weekly Podcasts
  • Join our DeviceTalks Tuesdays Discussion

Copyright © 2025 WTWH Media, LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media LLC. Site Map | Privacy Policy | RSS

Search Medical Design & Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Supplies and Components Index
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • MedTech Resources
    • Medtech Events in 2025
    • The 2024 Medtech Big 100
    • Medical Device Handbook
    • MedTech 100 Index
    • Subscribe to Print Magazine
    • DeviceTalks
    • Digital Editions
    • eBooks
    • Manufacturer Search
    • Podcasts
    • Print Subscription
    • Webinars / Digital Events
    • Whitepapers
    • Voices
    • Video
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Women in Medtech
  • Advertise
  • Subscribe