Medical Design and Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Supplies and Components Index
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • MedTech Resources
    • Medtech Events in 2025
    • The 2024 Medtech Big 100
    • Medical Device Handbook
    • MedTech 100 Index
    • Subscribe to Print Magazine
    • DeviceTalks
    • Digital Editions
    • eBooks
    • Educational Assets
    • Manufacturer Search
    • Podcasts
    • Print Subscription
    • Webinars / Digital Events
    • Whitepapers
    • Voices
    • Views
    • Video
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Women in Medtech
  • Advertise
  • Subscribe

Projecting a 3-Dimensional Future

July 9, 2014 By American Friends of Tel Aviv University

Tel Aviv University researchers develop holography technology that could change the way we view the world

Since the 1960s, theatergoers have shelled out for crude 3D glasses, polarized glasses, and shutter glasses to enhance their viewing experience. These basic devices, used to trick the brain into perceiving an artificial three-dimensional reality, may soon be rendered obsolete with the introduction of new holography technology developed by Tel Aviv University researchers.

TAU doctoral students Yuval Yifat, Michal Eitan, and Zeev Iluz have developed highly efficient holography based on nanoantennas that could be used for security as well as medical and recreational purposes. Prof. Yael Hanein, of TAU’s School of Electrical Engineering and head of TAU’s Center for Nanoscience and Nanotechnology, and Prof. Jacob Scheuer and Prof. Amir Boag of the School of Electrical Engineering, led the development team. Their research, published in the American Chemical Society’s publication Nano Letters, uses the parameters of light itself to create dynamic and complex holographic images.

In order to effect a three-dimensional projection using existing technology, two-dimensional images must be “replotted” — rotated and expanded to achieve three-dimension-like vision. But the team’s nanoantenna technology permits newly designed holograms to replicate the appearance of depth without being replotted. The applications for the technology are vast and diverse, according to the researchers, who have already been approached by commercial entities interested in the technology.

Taking Out the Map
“We had this interesting idea — to play with the parameters of light, the phase of light,” said Mr. Yifat. “If we could dynamically change the relation between light waves, we could create something that projected dynamically — like holographic television, for example. The applications for this are endless. If you take light and shine it on a specially engineered nanostructure, you can project it in any direction you want and in any form that you want. This leads to interesting results.”

The researchers worked in the lab for over a year to develop and patent a small metallic nanoantenna chip that, together with an adapted holography algorithm, could determine the “phase map” of a light beam. “Phase corresponds with the distance light waves have to travel from the object you are looking at to your eye,” said Prof. Hanein. “In real objects, our brains know how to interpret phase information so you get a feeling of depth, but when you look at a photograph, you often lose this information so the photographs look flat. Holograms save the phase information, which is the basis of 3D imagery. This is truly one of the holy grails of visual technology.”

According to the researchers, their methodology is the first of its kind to successfully produce high-resolution holographic imagery that can be projected efficiently in any direction.

“We can use this technology to reflect any desired object,” said Prof. Scheuer. “Before, scientists were able to produce only basic shapes — circles and stripes, for example. We used, as our model, the logo of Tel Aviv University, which has a very specific design, and were able to achieve the best results seen yet.”

The Key to Complex Imagery
“This can be used for scientific research, security, medical, engineering, and recreational purposes,” said Prof. Scheuer. “Imagine a surgeon, who is forced to replot several CAT-SCAN images to generate an accurate picture. By generating just one holographic image, she could examine symptoms from every angle. Similarly, an architect could draw up a holographic blueprint that he could actually walk through and inspect. The applications are truly endless.”

The new technology could also be used to improve laser-based radars used for military purposes as well as advance anti-counterfeiting techniques that safeguard against theft.

“We optimized holograms to the highest resolution and created a new methodology able to produce any arbitrary image,” said Prof. Scheuer. “Everything was done here, at the facilities of Tel Aviv University Center for Nanoscience and Nanotechnology; including the fabrication, characterization and experiments.”

The researchers are currently developing technology that will allow holographic images to change shape and move.

Related Articles Read More >

An illustration of Embolization Inc.'s Nitinol Enhanced Device (NED).
This nitinol vascular embolization device has another shape memory material up its sleeve
A photo of nitinol, a nickel-titanium alloy used for medical devices such as stents, heart valves, catheters and orthopedics.
What is nitinol and where is it used?
July 2025 edition: The Surgical Robotics issue, featuring Capstan Medical, J&J and Zimmer Biomet
A photo of Capstan Medical's mitral valve implant, which uses nitinol.
Capstan Medical’s R&D head discusses the heart valve and robotics startup’s tech, engineering challenges and solutions, advice for others in medtech and how to join his team
“mdo
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest medical device business news, application and technology trends.

DeviceTalks Weekly

See More >

MDO Digital Edition

Digital Edition

Subscribe to Medical Design & Outsourcing. Bookmark, share and interact with the leading medical design engineering magazine today.

MEDTECH 100 INDEX

Medtech 100 logo
Market Summary > Current Price
The MedTech 100 is a financial index calculated using the BIG100 companies covered in Medical Design and Outsourcing.
DeviceTalks

DeviceTalks is a conversation among medical technology leaders. It's events, podcasts, webinars and one-on-one exchanges of ideas & insights.

DeviceTalks

New MedTech Resource

Medical Tubing

MassDevice

Mass Device

The Medical Device Business Journal. MassDevice is the leading medical device news business journal telling the stories of the devices that save lives.

Visit Website
MDO ad
Medical Design and Outsourcing
  • MassDevice
  • DeviceTalks
  • MedTech100 Index
  • Medical Tubing + Extrusion
  • Medical Design Sourcing
  • Drug Delivery Business News
  • Drug Discovery & Development
  • Pharmaceutical Processing World
  • R&D World
  • About Us/Contact
  • Advertise With Us
  • Subscribe to Print Magazine
  • Subscribe to our E-Newsletter
  • Listen to our Weekly Podcasts
  • Join our DeviceTalks Tuesdays Discussion

Copyright © 2025 WTWH Media, LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media LLC. Site Map | Privacy Policy | RSS

Search Medical Design & Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Supplies and Components Index
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • MedTech Resources
    • Medtech Events in 2025
    • The 2024 Medtech Big 100
    • Medical Device Handbook
    • MedTech 100 Index
    • Subscribe to Print Magazine
    • DeviceTalks
    • Digital Editions
    • eBooks
    • Educational Assets
    • Manufacturer Search
    • Podcasts
    • Print Subscription
    • Webinars / Digital Events
    • Whitepapers
    • Voices
    • Views
    • Video
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Women in Medtech
  • Advertise
  • Subscribe