Medical Design and Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • Med Tech Resources
    • DeviceTalks Tuesdays
    • Digital Editions
    • eBooks
    • Manufacturer Search
    • Medical Device Handbook
    • MedTech 100 Index
    • Podcasts
    • Print Subscription
    • The Big 100
    • Webinars / Digital Events
    • Whitepapers
    • Video
  • 2022 Leadership in MedTech
    • 2022 Leadership Voting!
    • 2021 Winners
    • 2020 Winners
  • Women in Medtech

Protein’s ‘Hands’ Enable Bacteria To Establish Infection

July 16, 2014 By Kansas State University

When it comes to infecting humans and animals, bacteria need a helping hand.

Kansas State University biochemists have found the helping hand: groups of tiny protein loops on the surface of cells. These loops are similar to the fingers of a hand, and by observing seven individual loops on the surface of E. coli bacterial cells, the researchers found that the loops can open or close to grab iron in the environment.

“These structures are like small hands on the surface of bacterial cells,” said Phillip Klebba, principal investigator and professor and head of biochemistry and molecular biophysics. “They make the bacteria capable of recognizing something and grabbing it from the environment. It’s amazing that such a tiny molecule can do that.”

Kansas State University researchers are the first to observe this process. Their experiments may lead to new ways to protect people and animals against bacterial infections by helping scientists develop targeted treatment and intervention methods.

The research is featured as the cover article for the July issue of the Journal of General Physiology.

All cells need iron to stay alive, which puts iron at the center of the microbial pathogenesis process. When bacteria invade an animal or human, they must acquire iron to establish an infection, Klebba said.

“A microbiological war is going on in the host tissue,” Klebba said. “The host is trying to prevent the microbe from getting iron. The microbe is trying to get the iron using proteins that can essentially see their environment, grab iron and internalize it into the bacterial cell.”

In the latest research, the scientists used site-directed spectroscopic analysis of E. coli cells to monitor the activity of the surface transport proteins. Through their experiments, they observed the seven loops on the cell surface moving as they recognized and absorbed iron in the environment for later transport into the cell.

The absorption process happens quickly and efficiently, Klebba said. Less than a second after the bacteria enter an environment with iron compounds, they recognize the molecules, grab them and start the transfer process.

“If we can understand exactly how this acquisition process works, we can design, isolate or identify small molecules that inhibit the iron uptake process,” Klebba said. “Those are potentially antimicrobial agents that could protect people and animals against bacterial disease.”

The scientists will continue the research to get a full understanding of how the proteins manage to transport iron from the outside to the inside of cells.

The research received support from the National Institutes of Health and the National Science Foundation. Research collaborators from Kansas State University include: Salete M.C. Newton, research professor of biochemistry and molecular biophysics; Mathew Hanson, master’s student in biochemistry, Hays; Lorne Jordan, doctoral student in biochemistry, Toledo, Ohio; Yan Shipelskiy, doctoral student in biochemistry, Holland, Pennsylvania; and Aritri Majumdar, doctoral student in biochemistry, Kolkata, India.

Collaborators from the University of Oklahoma’s department of chemistry and biochemistry include Chuck R. Smallwood, Vy Trinh, Daniel W. Schuerch and Amparo Gala.

Related Articles Read More >

Lazurite ArthroFree wireless surgical camera system Minnetronix Medical
How Minnetronix Medical helped Lazurite with its wireless surgical camera
Medtronic Hugo robot-assisted surgery system
The road to a robot: Medtronic’s development process for its Hugo RAS system
A portrait of Stryker executive Siddarth Satish
How Stryker includes users for product design in the digital age
A portrait of Stryker executive Tracy Robertson
Stryker leaders talk medtech trends at DeviceTalks Boston: ‘If you’re slow, you’re going to lose’

DeviceTalks Weekly.

May 13, 2022
Our Pre-Post-DeviceTalks Boston episode, also MedtronicTalks replay with Gastro CMO Austin Chiang
See More >

MDO Digital Edition

Digital Edition

Subscribe to Medical Design & Outsourcing. Bookmark, share and interact with the leading medical design engineering magazine today.

MEDTECH 100 INDEX

Medtech 100 logo
Market Summary > Current Price
The MedTech 100 is a financial index calculated using the BIG100 companies covered in Medical Design and Outsourcing.
DeviceTalks

DeviceTalks is a conversation among medical technology leaders. It's events, podcasts, webinars and one-on-one exchanges of ideas & insights.

DeviceTalks

New MedTech Resource

Medical Tubing

Enewsletter Subscriptions

Enewsletter Subscriptions

MassDevice

Mass Device

The Medical Device Business Journal. MassDevice is the leading medical device news business journal telling the stories of the devices that save lives.

Visit Website
MDO ad
Medical Design and Outsourcing
  • MassDevice
  • DeviceTalks
  • MedTech 100 Index
  • Medical Tubing + Extrusion
  • Drug Delivery Business News
  • Drug Discovery & Development
  • Pharmaceutical Processing World
  • R&D World
  • About Us/Contact
  • Advertise With Us
  • Subscribe to Print Magazine
  • Subscribe to E-newsletter
  • Attend our Monthly Webinars
  • Listen to our Weekly Podcasts
  • Join our DeviceTalks Tuesdays Discussion

Copyright © 2022 WTWH Media, LLC. All Rights Reserved. Site Map | Privacy Policy | RSS

Search Medical Design & Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • Med Tech Resources
    • DeviceTalks Tuesdays
    • Digital Editions
    • eBooks
    • Manufacturer Search
    • Medical Device Handbook
    • MedTech 100 Index
    • Podcasts
    • Print Subscription
    • The Big 100
    • Webinars / Digital Events
    • Whitepapers
    • Video
  • 2022 Leadership in MedTech
    • 2022 Leadership Voting!
    • 2021 Winners
    • 2020 Winners
  • Women in Medtech