Medical Design and Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Supplies and Components Index
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • MedTech Resources
    • Medtech Events in 2025
    • The 2024 Medtech Big 100
    • Medical Device Handbook
    • MedTech 100 Index
    • Subscribe to Print Magazine
    • DeviceTalks
    • Digital Editions
    • eBooks
    • Educational Assets
    • Manufacturer Search
    • Podcasts
    • Print Subscription
    • Webinars / Digital Events
    • Whitepapers
    • Voices
    • Views
    • Video
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Women in Medtech
  • Advertise
  • Subscribe

Rapid, Sensitive Test for HIV Mutations

October 15, 2015 By Brown University

Tests that can distinguish whether HIV-positive people are infected with a drug-resistant strain or a non-resistant strain allow patients to get the most effective treatment as quickly as possible. In the November edition of the Journal of Molecular Diagnostics, a team of Brown University researchers describes a new method that works faster and more sensitively in lab testing than the current standard technologies.

The main advance enabling that improved performance is that the system operates directly on the virus’ more readily available RNA rather than requiring extra, potentially error-prone steps to examine DNA derived from RNA. In a single tube, the system can first combine two engineered probes (ligation) if a mutation is present and then make many copies of those combined probes (amplification) for detection.

A Brown team has developed a new method for analyzing the the RNA (green strands) of HIV for mutations (red dot) that convey drug resistance. The system does not require transcription of RNA to DNA, as current technologies do, and works within one solution (purple droplet). (Credit: Lei Zhang/Brown University)

“LRA (ligation on RNA amplification) uniquely optimizes two enzymatic reactions — RNA-based ligation, and quantitative PCR (polymerase chain reaction) amplification — into a single system,” said Anubhav Tripathi, professor of engineering at Brown and corresponding author on the paper. “Each HIV contains about 10,000 nucleotides, or building blocks, in its genetic material, and a drop of blood from a patient with resistant HIV can contain thousands to millions of copies of HIV. To find that one virus, out of thousands to millions, which is mutated at just a single nucleotide is like finding a needle in a haystack.”

The experiments reported in the paper show that the LRA test was sensitive enough to find a commonly sought K103N mutation in concentrations as low as one mutant per 10,000 strands of “normal” viral RNA. The LRA detection worked within two hours, while alternative technologies such as ASPCR or pyrosequencing, can take as long as eight.

LRA works by sending in many copies of a pair of short engineered probes of genetic material to complement the RNA in the HIV sample. Under optimized conditions, those pairs that perfectly match the target HIV RNA containing a mutation that causes drug resistance can rapidly become fused together, or ligated, by an enzyme. If there is a single nucleotide difference, the pair won’t fuse.

The fusing of the engineered genetic probes is designed to happen at room temperature. After a short period, the LRA system then heats the slightly alkaline solution, which shuts off the fusing reaction but turns on the amplification (copying) of fused pairs. That allows the LRA system to produce a strong signal of fused pairs, if there are any. All this happens in a single step, without any need to change solution.

Aiming for the Clinic
The development of LRA is the product of a collaboration led by Tripathi and Dr. Rami Kantor, associate professor of medicine in the Warren Alpert Medical School. Kantor, who is also an HIV specialist at The Miriam Hospital and co-senior author of the paper, works in developing nations such as Kenya and India, monitoring HIV resistance. One day when Tripathi was at the Lifespan/Tufts/Brown Center for AIDS Research Retrovirology Core Laboratory to discuss his work, Kantor suggested a collaboration with the end goal of developing a cheap, quick and accurate HIV drug resistance mutation detection system for use in developing nations.

“We met soon thereafter and started working together on various developments and implementations of the ideas and on the integration of our worlds,” Kantor said.

The authors acknowledge in the paper that what they demonstrate, while successful in the lab, is clearly not ready for deployment in the field. The lab tests, for example, are shown to work on HIV RNA derived from plasmids, laboratory viral strains, not on samples from circulating viruses found in ailing patients. The RNA fragments were prepared in Kantor’s lab by Dr. Mia Coetzer, assistant professor of medicine and a co-author on the paper.

“The next steps are to continue the development of LRA and other methods on patient samples to detect additional mutations and address specific HIV challenges related to mutation detection, such as enormous genomic diversity,” Kantor said, “and work on incorporation of such methods onto a point-of-care device that would satisfy the infrastructure and low-cost needs of resource limited settings.”

Related Articles Read More >

An illustration of Embolization Inc.'s Nitinol Enhanced Device (NED).
This nitinol vascular embolization device has another shape memory material up its sleeve
A photo of nitinol, a nickel-titanium alloy used for medical devices such as stents, heart valves, catheters and orthopedics.
What is nitinol and where is it used?
July 2025 edition: The Surgical Robotics issue, featuring Capstan Medical, J&J and Zimmer Biomet
A photo of Capstan Medical's mitral valve implant, which uses nitinol.
Capstan Medical’s R&D head discusses the heart valve and robotics startup’s tech, engineering challenges and solutions, advice for others in medtech and how to join his team
“mdo
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest medical device business news, application and technology trends.

DeviceTalks Weekly

See More >

MDO Digital Edition

Digital Edition

Subscribe to Medical Design & Outsourcing. Bookmark, share and interact with the leading medical design engineering magazine today.

MEDTECH 100 INDEX

Medtech 100 logo
Market Summary > Current Price
The MedTech 100 is a financial index calculated using the BIG100 companies covered in Medical Design and Outsourcing.
DeviceTalks

DeviceTalks is a conversation among medical technology leaders. It's events, podcasts, webinars and one-on-one exchanges of ideas & insights.

DeviceTalks

New MedTech Resource

Medical Tubing

MassDevice

Mass Device

The Medical Device Business Journal. MassDevice is the leading medical device news business journal telling the stories of the devices that save lives.

Visit Website
MDO ad
Medical Design and Outsourcing
  • MassDevice
  • DeviceTalks
  • MedTech100 Index
  • Medical Tubing + Extrusion
  • Medical Design Sourcing
  • Drug Delivery Business News
  • Drug Discovery & Development
  • Pharmaceutical Processing World
  • R&D World
  • About Us/Contact
  • Advertise With Us
  • Subscribe to Print Magazine
  • Subscribe to our E-Newsletter
  • Listen to our Weekly Podcasts
  • Join our DeviceTalks Tuesdays Discussion

Copyright © 2025 WTWH Media, LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media LLC. Site Map | Privacy Policy | RSS

Search Medical Design & Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Supplies and Components Index
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • MedTech Resources
    • Medtech Events in 2025
    • The 2024 Medtech Big 100
    • Medical Device Handbook
    • MedTech 100 Index
    • Subscribe to Print Magazine
    • DeviceTalks
    • Digital Editions
    • eBooks
    • Educational Assets
    • Manufacturer Search
    • Podcasts
    • Print Subscription
    • Webinars / Digital Events
    • Whitepapers
    • Voices
    • Views
    • Video
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Women in Medtech
  • Advertise
  • Subscribe