Medical Design and Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Supplies and Components Index
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • MedTech Resources
    • Medtech Events in 2025
    • The 2024 Medtech Big 100
    • Medical Device Handbook
    • MedTech 100 Index
    • Subscribe to Print Magazine
    • DeviceTalks
    • Digital Editions
    • eBooks
    • Manufacturer Search
    • Podcasts
    • Print Subscription
    • Webinars / Digital Events
    • Whitepapers
    • Voices
    • Video
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Women in Medtech
  • Advertise
  • Subscribe

Researchers 3D Print Lifelike Artificial Organ Models

December 13, 2017 By University of Minnesota

A team of researchers led by the University of Minnesota has 3D printed lifelike artificial organ models that mimic the exact anatomical structure, mechanical properties, and look and feel of real organs. These patient-specific organ models, which include integrated soft sensors, can be used for practice surgeries to improve surgical outcomes in thousands of patients worldwide.

The research was published today in the journal Advanced Materials Technologies. The researchers are submitting a patent on this technology. 

“We are developing next-generation organ models for pre-operative practice. The organ models we are 3D printing are almost a perfect replica in terms of the look and feel of an individual’s organ, using our custom-built 3D printers,” says lead researcher Michael McAlpine, an associate professor of mechanical engineering in the University of Minnesota’s College of Science and Engineering and a 2017 recipient of the Presidential Early Career Award for Scientists and Engineers (PECASE).

“We think these organ models could be ‘game-changers’ for helping surgeons better plan and practice for surgery. We hope this will save lives by reducing medical errors during surgery,” McAlpine adds.

McAlpine said his team was originally contacted by Dr. Robert Sweet, a urologist at the University of Washington who previously worked at the University of Minnesota. Sweet was looking for more accurate 3D printed models of the prostate to practice surgeries.

Currently, most 3D-printed organ models are made using hard plastics or rubbers. This limits their application for accurate prediction and replication of the organ’s physical behavior during surgery. There are significant differences in the way these organs look and feel compared to their biological counterparts. They can be too hard to cut or suture. They also lack an ability to provide quantitative feedback.

Researchers can attach sensors to the organ models to give surgeons real-time feedback on how much force they can use during surgery without damaging the tissue. (Image credit: McAlpine Research Group)

In this study, the research team took MRI scans and tissue samples from three patients’ prostates. Researchers tested the tissue and developed customized silicone-based inks that can be “tuned” to precisely match the mechanical properties of each patient’s prostate tissue. These unique inks were used in a custom-built 3D printer by researchers at the University of Minnesota. The researchers then attached soft, 3D-printed sensors to the organ models and observed the reaction of the model prostates during compression tests and the application of various surgical tools.

“The sensors could give surgeons real-time feedback on how much force they can use during surgery without damaging the tissue,” says Kaiyan Qiu, a University of Minnesota mechanical engineering postdoctoral researcher and lead author of the paper. “This could change how surgeons think about personalized medicine and pre-operative practice.”

In the future, researchers hope to use this new method to 3D print lifelike models of more complicated organs, using multiple inks. For instance, if the organ has a tumor or deformity, the surgeons would be able to see that in a patient-specific model and test various strategies for removing tumors or correcting complications. They also hope to someday explore applications beyond surgical practice.

“If we could replicate the function of these tissues and organs, we might someday even be able to create ‘bionic organs’ for transplants,” McAlpine says. “I call this the ‘Human X’ project. It sounds a bit like science fiction, but if these synthetic organs look, feel, and act like real tissue or organs, we don’t see why we couldn’t 3D print them on demand to replace real organs.”

Related Articles Read More >

An illustration showing the Artedrone Sasha thrombectomy catheter approaching a blood clot.
This microrobot system is designed to float inside a stroke patient for autonomous thrombectomy
A photo of nitinol, a nickel-titanium alloy used for medical devices such as stents, heart valves, catheters and orthopedics.
What is nitinol and where is it used?
An illustration showing the Edwards Lifesciences Sapien M3 transcatheter mitral valve replacement (TMVR) system's valve being placed in the heart. [Image courtesy of Edwards Lifesciences]
The top nitinol cardiac medtech news of 2025 (so far)
A photo showing the Dualto Energy System's modular design with two generators stacked for two users at a time.
What J&J MedTech’s new Dualto says about the OR of the future — and Ottava
“mdo
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest medical device business news, application and technology trends.

DeviceTalks Weekly

See More >

MDO Digital Edition

Digital Edition

Subscribe to Medical Design & Outsourcing. Bookmark, share and interact with the leading medical design engineering magazine today.

MEDTECH 100 INDEX

Medtech 100 logo
Market Summary > Current Price
The MedTech 100 is a financial index calculated using the BIG100 companies covered in Medical Design and Outsourcing.
DeviceTalks

DeviceTalks is a conversation among medical technology leaders. It's events, podcasts, webinars and one-on-one exchanges of ideas & insights.

DeviceTalks

New MedTech Resource

Medical Tubing

MassDevice

Mass Device

The Medical Device Business Journal. MassDevice is the leading medical device news business journal telling the stories of the devices that save lives.

Visit Website
MDO ad
Medical Design and Outsourcing
  • MassDevice
  • DeviceTalks
  • MedTech100 Index
  • Medical Tubing + Extrusion
  • Medical Design Sourcing
  • Drug Delivery Business News
  • Drug Discovery & Development
  • Pharmaceutical Processing World
  • R&D World
  • About Us/Contact
  • Advertise With Us
  • Subscribe to Print Magazine
  • Subscribe to our E-Newsletter
  • Listen to our Weekly Podcasts
  • Join our DeviceTalks Tuesdays Discussion

Copyright © 2025 WTWH Media, LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media LLC. Site Map | Privacy Policy | RSS

Search Medical Design & Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Supplies and Components Index
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • MedTech Resources
    • Medtech Events in 2025
    • The 2024 Medtech Big 100
    • Medical Device Handbook
    • MedTech 100 Index
    • Subscribe to Print Magazine
    • DeviceTalks
    • Digital Editions
    • eBooks
    • Manufacturer Search
    • Podcasts
    • Print Subscription
    • Webinars / Digital Events
    • Whitepapers
    • Voices
    • Video
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Women in Medtech
  • Advertise
  • Subscribe