Medical Design and Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Supplies and Components Index
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • MedTech Resources
    • Medtech Events in 2025
    • The 2024 Medtech Big 100
    • Medical Device Handbook
    • MedTech 100 Index
    • Subscribe to Print Magazine
    • DeviceTalks
    • Digital Editions
    • eBooks
    • Manufacturer Search
    • Podcasts
    • Print Subscription
    • Webinars / Digital Events
    • Whitepapers
    • Voices
    • Video
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Women in Medtech
  • Advertise
  • Subscribe

Researchers build flexible electronics quickly and inexpensively

October 6, 2017 By Danielle Kirsh

flexible electronics

Literal flexibility may bring the power of a new transistor developed at UW–Madison to digital devices that bend and move. [Image from Jung-Hun Seo, University at Buffalo, State University of New York]

Engineers at the University of Wisconsin-Madison have created one of the most functional flexible transistors in the world. The process to create it is fast, simple and inexpensive enough that it is easily scalable to the commercial level, according to the researchers.

The advance could enable manufacturers to create “smart” wireless capabilities for a number of large or small products, including wearable sensors that can curve, bend, stretch and move.

UW-Madison’s transistor is similar to a 20-year-old bipolar complementary metal oxide semiconductor (BiCMOS) transistor, but instead it combines speed, high current and low power dissipation in the form of heat and wasted energy on one surface. The combination of it all creates mixed signal devices that are suitable for portable electronics like cellphones.

“The industry standard is very good,” Zhenqiang (Jack) Ma, the Lynn H. Matthias Professor and Vilas Distinguished Achievement Professor in electrical and computer engineering at UW–Madison, said in a press release. “Now we can do the same things with our transistor — but it can bend.”

BiCMOS flexible electronics are difficult to create because it can take several months with a number of precise and high-temperature steps. Ma and his team avoided that and created their flexible electronics on a single-crystal silicon nanomembrane on a piece of bendable plastic. The process they used eliminated many of the required steps and allowed them to create it in less time and a less expensive cost.

“In industry, they need to finish these in three months,” Ma said. “We finished it in a week.”

The researchers suggest that this method can scale to industry-level production immediately.

“The key is that parameters are important,” Ma said. “One high-temperature step fixes everything — like glue. Now, we have more powerful mixed-signal tools. Basically, the idea is for flexible electronics to expand with this. The platform is getting bigger.”

The research was published in the journal npj Flexible Electronics.

(Learn from some of the medical device industry’s top executives and experts at DeviceTalks West, Dec. 11–12 in Orange County, Calif.)

You may also like:

  • Flex
    Why Flex is betting on stretchtronics for medtech
  • sweat-powered biofuel cell University of California San Diego
    This sweat-powered biofuel cell could create better wearable devices
  • wearables-future
    4 ways wearables will transform healthcare’s future

About The Author

Danielle Kirsh

Danielle Kirsh is an award-winning journalist and senior editor for Medical Design & Outsourcing, MassDevice, and Medical Tubing + Extrusion, and the founder of Women in Medtech and lead editor for Big 100. She received her bachelor's degree in broadcast journalism and mass communication from Norfolk State University and is pursuing her master's in global strategic communications at the University of Florida. You can connect with her on Twitter and LinkedIn, or email her at dkirsh@wtwhmedia.com.

Related Articles Read More >

A photo of a Valens chip used for high-resolution, disposable endoscopes.
This breakthrough for high-resolution disposable endoscopes comes from an unlikely source
This is an Introcon marketing image of manufacturing at its Arden Hills, Minnesota headquarters location.
Intricon expands in Minnesota in response to recent growth
Trump proposes new import taxes on semiconductors and chips
A photo of the Biosense Webster ThermoCool SmartTouch SF ablation catheter.
How Johnson & Johnson MedTech’s ThermoCool SmartTouch cardiac ablation catheters use nitinol for contact-force sensing
“mdo
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest medical device business news, application and technology trends.

DeviceTalks Weekly

See More >

MDO Digital Edition

Digital Edition

Subscribe to Medical Design & Outsourcing. Bookmark, share and interact with the leading medical design engineering magazine today.

MEDTECH 100 INDEX

Medtech 100 logo
Market Summary > Current Price
The MedTech 100 is a financial index calculated using the BIG100 companies covered in Medical Design and Outsourcing.
DeviceTalks

DeviceTalks is a conversation among medical technology leaders. It's events, podcasts, webinars and one-on-one exchanges of ideas & insights.

DeviceTalks

New MedTech Resource

Medical Tubing

MassDevice

Mass Device

The Medical Device Business Journal. MassDevice is the leading medical device news business journal telling the stories of the devices that save lives.

Visit Website
MDO ad
Medical Design and Outsourcing
  • MassDevice
  • DeviceTalks
  • MedTech100 Index
  • Medical Tubing + Extrusion
  • Medical Design Sourcing
  • Drug Delivery Business News
  • Drug Discovery & Development
  • Pharmaceutical Processing World
  • R&D World
  • About Us/Contact
  • Advertise With Us
  • Subscribe to Print Magazine
  • Subscribe to our E-Newsletter
  • Listen to our Weekly Podcasts
  • Join our DeviceTalks Tuesdays Discussion

Copyright © 2025 WTWH Media, LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media LLC. Site Map | Privacy Policy | RSS

Search Medical Design & Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Supplies and Components Index
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • MedTech Resources
    • Medtech Events in 2025
    • The 2024 Medtech Big 100
    • Medical Device Handbook
    • MedTech 100 Index
    • Subscribe to Print Magazine
    • DeviceTalks
    • Digital Editions
    • eBooks
    • Manufacturer Search
    • Podcasts
    • Print Subscription
    • Webinars / Digital Events
    • Whitepapers
    • Voices
    • Video
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Women in Medtech
  • Advertise
  • Subscribe