Medical Design and Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Supplies and Components Index
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • MedTech Resources
    • Medtech Events in 2025
    • The 2024 Medtech Big 100
    • Medical Device Handbook
    • MedTech 100 Index
    • Subscribe to Print Magazine
    • DeviceTalks
    • Digital Editions
    • eBooks
    • Manufacturer Search
    • Podcasts
    • Print Subscription
    • Webinars / Digital Events
    • Whitepapers
    • Voices
    • Video
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Women in Medtech
  • Advertise
  • Subscribe

Researchers Claim Phone Calls Can Forecast Dengue Fever Outbreaks

July 8, 2016 By New York University

A team of scientists has developed a system that can forecast the outbreak of dengue fever by simply analyzing the calling behavior of citizens to a public-health hotline. Their work is described in the journal Science Advances.

The telephone-based disease surveillance system can forecast two to three weeks ahead of time, and with intra-city granularity, the outbreak of dengue fever, a mosquito-borne virus that infects up to 400,000 people each year. 

“Thousands of lives are lost every year in developing countries for failing to detect epidemics early because of the lack of real-time data on reported cases,” according to Lakshminarayanan Subramanian, a professor at New York University’s Courant Institute of Mathematical Sciences and part of the research team.

The system, which crowdsources the data using citizen inquiries and feedback, measures the number of calls received at a health hotline facility to forecast the number of dengue cases at a block-by-block level. 

Collecting disease surveillance data traditionally requires a huge infrastructure to collect and analyze disease incidence data from all healthcare facilities in a country. The primary appeal of the “telephone” system is its capability to closely monitor disease activity by merely analyzing citizen calls on a public-health hotline. 

“Early warning systems in the past only generated alerts of disease outbreaks on a city or state level,” Nabeel Abdur Rehman, a doctoral student at NYU and one of the researchers, said. “Alerts are often of little significance given that governments don’t have enough resources to allocate to large geographical units. Our goal was to develop a system that could pinpoint the location inside a city where disease activity has increased so the government could perform targeted containment of a disease.” 

The efforts to develop the system started in the aftermath of the 2011 dengue outbreaks in Pakistan, which infected over 21,000 people and took 350 lives. Because there is no known cure or vaccine for treating different stages of dengue fever, most public health efforts focus on prevention through disease surveillance and vector control methods, i.e. eliminating the carriers of a particular disease, such as mosquitoes. 

The team used more than 300,000 calls to the health hotline, set up in the aftermath of the 2011 outbreaks, to forecast the number of dengue cases across the city and at a block-by-block level over a period of two years. The researchers then matched their predictions with the actual number of cases reported in public hospitals.

The results showed a high level of accuracy for the model’s predictions: The system not only flagged an outbreak, but also made an accurate forecast of both the number of patients and their locations two to three weeks ahead of time.

Related Articles Read More >

Axoft Fleuron brain-computer interface BCI probe
Axoft makes Fleuron BCI material available for purchase, inks license deal with Stanford
An illustration showing the Edwards Lifesciences Sapien M3 transcatheter mitral valve replacement (TMVR) system's valve being placed in the heart. [Image courtesy of Edwards Lifesciences]
The top nitinol cardiac medtech news of 2025 (so far)
An illustration showing the Edwards Lifesciences Sapien M3 transcatheter mitral valve replacement (TMVR) system's valve being placed in the heart. [Image courtesy of Edwards Lifesciences]
Q&A with Darshin Patel, who led the Edwards Lifesciences Sapien M3 TMVR system’s development
A photo of nitinol, a nickel-titanium alloy used for medical devices such as stents, heart valves, catheters and orthopedics.
What is nitinol and where is it used?
“mdo
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest medical device business news, application and technology trends.

DeviceTalks Weekly

See More >

MDO Digital Edition

Digital Edition

Subscribe to Medical Design & Outsourcing. Bookmark, share and interact with the leading medical design engineering magazine today.

MEDTECH 100 INDEX

Medtech 100 logo
Market Summary > Current Price
The MedTech 100 is a financial index calculated using the BIG100 companies covered in Medical Design and Outsourcing.
DeviceTalks

DeviceTalks is a conversation among medical technology leaders. It's events, podcasts, webinars and one-on-one exchanges of ideas & insights.

DeviceTalks

New MedTech Resource

Medical Tubing

MassDevice

Mass Device

The Medical Device Business Journal. MassDevice is the leading medical device news business journal telling the stories of the devices that save lives.

Visit Website
MDO ad
Medical Design and Outsourcing
  • MassDevice
  • DeviceTalks
  • MedTech100 Index
  • Medical Tubing + Extrusion
  • Medical Design Sourcing
  • Drug Delivery Business News
  • Drug Discovery & Development
  • Pharmaceutical Processing World
  • R&D World
  • About Us/Contact
  • Advertise With Us
  • Subscribe to Print Magazine
  • Subscribe to our E-Newsletter
  • Listen to our Weekly Podcasts
  • Join our DeviceTalks Tuesdays Discussion

Copyright © 2025 WTWH Media, LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media LLC. Site Map | Privacy Policy | RSS

Search Medical Design & Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Supplies and Components Index
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • MedTech Resources
    • Medtech Events in 2025
    • The 2024 Medtech Big 100
    • Medical Device Handbook
    • MedTech 100 Index
    • Subscribe to Print Magazine
    • DeviceTalks
    • Digital Editions
    • eBooks
    • Manufacturer Search
    • Podcasts
    • Print Subscription
    • Webinars / Digital Events
    • Whitepapers
    • Voices
    • Video
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Women in Medtech
  • Advertise
  • Subscribe