Medical Design and Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Supplies and Components Index
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • MedTech Resources
    • Medtech Events in 2025
    • The 2024 Medtech Big 100
    • Medical Device Handbook
    • MedTech 100 Index
    • Subscribe to Print Magazine
    • DeviceTalks
    • Digital Editions
    • eBooks
    • Manufacturer Search
    • Podcasts
    • Print Subscription
    • Webinars / Digital Events
    • Whitepapers
    • Voices
    • Video
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Women in Medtech
  • Advertise
  • Subscribe

Safety Net Sought in Tumor Growth After Stem Cell Transplantation

August 6, 2014 By AxoGen, Inc.

Recent studies have shown that transplanting induced pluripotent stem cell-derived neural stem cells (iPS-NSCs) can promote functional recovery after spinal cord injury in rodents and non-human primates. However, a serious drawback to the transplantation of iPS-NSCs is the potential for tumor growth, or tumorogenesis, post-transplantation.

In an effort to better understand this risk and find ways to prevent it, a team of Japanese researchers has completed a study in which they transplanted a human glioblastoma cell line into the intact spinal columns of laboratory mice that were either immunodeficient or immunocompetent and treated with or without immunosuppresant drugs. Bioluminescent imaging was used to track the transplanted cells as they were manipulated by immunorejection.

The researchers found that the withdrawal of immunosuppressant drugs eliminated tumor growth and, in effect, created a ‘safety lock’ against tumor formation as an adverse outcome of cell transplantation. They also confirmed that withdrawal of immunosuppression led to rejection of tumors formed by transplantation of induced pluripotent stem cell derived neural stem/progenitor cells (iPS-NP/SCs).

Although the central nervous system has shown difficulty in regenerating after damage, transplanting neural stem/progenitor cells (NS/PCs) has shown promise. Yet the problem of tumorogenesis, and increases in teratomas and gliomas after transplantation has been a serious problem. However, this study provides a provisional link to immune therapy that accompanies cell transplantation and the possibility that inducing immunorejection may work to reduce the likelihood of tumorogenesis occurring.

“Our findings suggest that it is possible to induce immunorejection of any type of foreign-grafted tumor cells by immunomodulation,” said study co-author Dr. Masaya Nakamura of the Keio University School of Medicine. “However, the tumorogenic mechanisms of induced pluripotent neural stem/progenitor cells (iPS-NS/PCs) are still to be elucidated, and there may be differences between iPS-NS/PCs derived tumors and glioblastoma arising from genetic mutations, abnormal epigenetic modifications and altered cell metabolisms.”

The researchers concluded that their model might be a reliable tool to target human spinal cord tumors in preclinical studies and also useful for studying the therapeutic effect of anticancer drugs against malignant tumors.

“This study provides evidence that the use of, and subsequent removal of, immunosuppression can be used to modulate cell survival and potentially remove tumor formation by transplanted glioma cells and provides preliminary data that the same is true for iPS-NS/PCs.” said Dr. Paul Sanberg, distinguished professor at the Center of Excellence for Aging and Brain Repair, University of South Florida. “Further study is required to determine if this technique could be used under all circumstances where transplantation of cells can result in tumor formation and its reliability in other organisms and paradigms.”

Related Articles Read More >

An illustration showing the Edwards Lifesciences Sapien M3 transcatheter mitral valve replacement (TMVR) system's valve being placed in the heart. [Image courtesy of Edwards Lifesciences]
The top nitinol cardiac medtech news of 2025 (so far)
A photo showing the Dualto Energy System's modular design with two generators stacked for two users at a time.
What J&J MedTech’s new Dualto says about the OR of the future — and Ottava
An illustration showing the Edwards Lifesciences Sapien M3 transcatheter mitral valve replacement (TMVR) system's valve being placed in the heart. [Image courtesy of Edwards Lifesciences]
Q&A with Darshin Patel, who led the Edwards Lifesciences Sapien M3 TMVR system’s development
A photo of nitinol, a nickel-titanium alloy used for medical devices such as stents, heart valves, catheters and orthopedics.
What is nitinol and where is it used?
“mdo
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest medical device business news, application and technology trends.

DeviceTalks Weekly

See More >

MDO Digital Edition

Digital Edition

Subscribe to Medical Design & Outsourcing. Bookmark, share and interact with the leading medical design engineering magazine today.

MEDTECH 100 INDEX

Medtech 100 logo
Market Summary > Current Price
The MedTech 100 is a financial index calculated using the BIG100 companies covered in Medical Design and Outsourcing.
DeviceTalks

DeviceTalks is a conversation among medical technology leaders. It's events, podcasts, webinars and one-on-one exchanges of ideas & insights.

DeviceTalks

New MedTech Resource

Medical Tubing

MassDevice

Mass Device

The Medical Device Business Journal. MassDevice is the leading medical device news business journal telling the stories of the devices that save lives.

Visit Website
MDO ad
Medical Design and Outsourcing
  • MassDevice
  • DeviceTalks
  • MedTech100 Index
  • Medical Tubing + Extrusion
  • Medical Design Sourcing
  • Drug Delivery Business News
  • Drug Discovery & Development
  • Pharmaceutical Processing World
  • R&D World
  • About Us/Contact
  • Advertise With Us
  • Subscribe to Print Magazine
  • Subscribe to our E-Newsletter
  • Listen to our Weekly Podcasts
  • Join our DeviceTalks Tuesdays Discussion

Copyright © 2025 WTWH Media, LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media LLC. Site Map | Privacy Policy | RSS

Search Medical Design & Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Supplies and Components Index
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • MedTech Resources
    • Medtech Events in 2025
    • The 2024 Medtech Big 100
    • Medical Device Handbook
    • MedTech 100 Index
    • Subscribe to Print Magazine
    • DeviceTalks
    • Digital Editions
    • eBooks
    • Manufacturer Search
    • Podcasts
    • Print Subscription
    • Webinars / Digital Events
    • Whitepapers
    • Voices
    • Video
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Women in Medtech
  • Advertise
  • Subscribe