Medical Design and Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Supplies and Components Index
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • MedTech Resources
    • Medtech Events in 2025
    • The 2024 Medtech Big 100
    • Medical Device Handbook
    • MedTech 100 Index
    • Subscribe to Print Magazine
    • DeviceTalks
    • Digital Editions
    • eBooks
    • Manufacturer Search
    • Podcasts
    • Print Subscription
    • Webinars / Digital Events
    • Whitepapers
    • Voices
    • Video
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Women in Medtech
  • Advertise
  • Subscribe

Scientists Uncover New Way to Grow Rare Life-Saving Blood Stem Cells

April 27, 2016 By McMaster University

Researchers at McMaster University’s Stem Cell and Cancer Research Institute have made significant steps forward in understanding the stem cells of the human blood system after discovering how a key protein allows for better control and regeneration of these cells.

This discovery, published today in the scientific journal Nature, illustrates how a protein called Musashi-2 regulates the function and development of important blood stem cells.

This knowledge provides new strategies that can be used to control the growth of these cells — cells that can be used as therapeutics for a range of life-threatening diseases but are, in general, in very short supply.

The senior author is Kristin Hope, principal investigator at the Stem Cell and Cancer Research Institute and assistant professor with McMaster University’s Department of Biochemistry and Biomedical Sciences. The research also involved collaborators from the University of California San Diego, University of Toronto and the University of Montreal.

Hope says the discovery could be impactful for the tens of thousands of patients suffering from a range of blood-based disorders including leukemia, lymphoma, aplastic anemia, sickle cell disease and more.

“We’ve really shone a light on the way these stem cells work. We now understand how they operate at a completely new level, and that provides us with a serious advantage in determining how to maximize these stem cells in therapeutics. With this newfound ability to control over the regeneration of these cells, more people will be able to get the treatment they need.”

The research team specifically looked at stem cells from umbilical cord blood, a proven but under-utilized source of stem cells for the treatment of adult blood cancers. These stem cells have the potential to become an important therapeutic for the thousands of people suffering from blood cancers who are awaiting the life-saving transplants.

Cells from umbilical cord blood have unique properties that make them easier to use for transplantation, including accessibility and adaptability. As a result, they allow for safer and more effective transplants.

The problem, Hope points out, is that there are very few stem cells available in individual cord blood samples — only about five per cent of all samples actually contain enough cells for a transplant. The team’s research into the importance of Musashi-2 and its role in expanding the number of stem cells in a given cord blood sample could help ease the current stem cell shortages.

Gene Yeo, associate professor at the University of California San Diego, co-corresponding author of the study, adds, “Most stem cell studies focus on proteins that bind DNA to control gene output. The prominent role we found for Musashi-2, a protein that instead binds to RNA, also underscores an urgency to study this second layer of gene regulation in stem cells.”

Hope says: “Providing enhanced numbers of stem cells for transplantation could alleviate some of the current post-transplantation complications and allow for faster recoveries, in turn reducing overall health care costs and wait times for newly diagnosed patients seeking treatment.”

“By expanding the stem cells as we have done, many more donated samples could now be used for transplants.”

Related Articles Read More >

Nanoscopic imaging showing human keratinocyte-matrix interaction.
These smart materials are key to advancing regenerative medicine
A series of before-and-after brain scans showing improvement in long COVID patients after hyperbaric oxygen therapy
Long COVID study finds potential in hyperbaric oxygen therapy
Rockwell Experience Center opens at Dean Kamen’s Advanced Regenerative Manufacturing Institute
What is microscale 3D printing? Lessons learned from Mayo Clinic
“mdo
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest medical device business news, application and technology trends.

DeviceTalks Weekly

See More >

MDO Digital Edition

Digital Edition

Subscribe to Medical Design & Outsourcing. Bookmark, share and interact with the leading medical design engineering magazine today.

MEDTECH 100 INDEX

Medtech 100 logo
Market Summary > Current Price
The MedTech 100 is a financial index calculated using the BIG100 companies covered in Medical Design and Outsourcing.
DeviceTalks

DeviceTalks is a conversation among medical technology leaders. It's events, podcasts, webinars and one-on-one exchanges of ideas & insights.

DeviceTalks

New MedTech Resource

Medical Tubing

MassDevice

Mass Device

The Medical Device Business Journal. MassDevice is the leading medical device news business journal telling the stories of the devices that save lives.

Visit Website
MDO ad
Medical Design and Outsourcing
  • MassDevice
  • DeviceTalks
  • MedTech100 Index
  • Medical Tubing + Extrusion
  • Medical Design Sourcing
  • Drug Delivery Business News
  • Drug Discovery & Development
  • Pharmaceutical Processing World
  • R&D World
  • About Us/Contact
  • Advertise With Us
  • Subscribe to Print Magazine
  • Subscribe to our E-Newsletter
  • Listen to our Weekly Podcasts
  • Join our DeviceTalks Tuesdays Discussion

Copyright © 2025 WTWH Media, LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media LLC. Site Map | Privacy Policy | RSS

Search Medical Design & Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Supplies and Components Index
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • MedTech Resources
    • Medtech Events in 2025
    • The 2024 Medtech Big 100
    • Medical Device Handbook
    • MedTech 100 Index
    • Subscribe to Print Magazine
    • DeviceTalks
    • Digital Editions
    • eBooks
    • Manufacturer Search
    • Podcasts
    • Print Subscription
    • Webinars / Digital Events
    • Whitepapers
    • Voices
    • Video
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Women in Medtech
  • Advertise
  • Subscribe