Medical Design and Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Supplies and Components Index
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • MedTech Resources
    • Medtech Events in 2025
    • The 2024 Medtech Big 100
    • Medical Device Handbook
    • MedTech 100 Index
    • Subscribe to Print Magazine
    • DeviceTalks
    • Digital Editions
    • eBooks
    • Educational Assets
    • Manufacturer Search
    • Podcasts
    • Print Subscription
    • Webinars / Digital Events
    • Whitepapers
    • Voices
    • Views
    • Video
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Women in Medtech
  • Advertise
  • Subscribe

See-Through Organs and Bodies Will Accelerate Biomedical Discoveries

August 4, 2014 By Cell Press

This is a 3D visualization of intact kidney tissue, obtained through the whole-body clearing and staining PARS method : Perfusion-assisted Agent Release in Situ (Yang et al, 2014). (Credit: Bin Yang and Viviana Gradinaru)The ability to see through organs and even the entire body to visualize long-range connections between cells as well as fine-grained cellular structures has been a long-time dream of biologists. A study published by Cell Press July 31st in the journal Cell has now made that dream a reality, revealing simple methods for making opaque organs, bodies, and human tissue biopsies transparent, while keeping the cellular structures and connections intact. The protocols could pave the way for a better understanding of brain-body interactions, more accurate clinical diagnoses and disease monitoring, and a new generation of therapies for conditions ranging from autism to chronic pain.

“Although the idea of tissue clearing has been around for a century, to our knowledge, this is the first study to perform whole-body clearing, as opposed to first extracting and then clearing organs outside the adult body,” says senior study author Viviana Gradinaru of the California Institute of Technology. “Our methodology has the potential to accelerate any scientific endeavor that would benefit from whole-organism mapping, including the study of how peripheral nerves and organs can profoundly affect cognition and mental processing, and vice versa.”

This is a 3D visualization of intact intestine tissue, obtained through the whole-body clearing and staining PARS method : Perfusion-assisted Agent Release in Situ (Yang et al, 2014). (Credit: Bin Yang and Viviana Gradinaru)Three-dimensional maps of intact organs and bodies are crucial for understanding complex, long-distance cellular interactions that play an important role in a range of biological processes. But until now, methods for making whole organs or bodies transparent and thus amenable to imaging and generating 3D maps have been limited to the brain or embryos. Gradinaru and her collaborators previously developed a brain-clearing technique called CLARITY, which involves embedding tissue into hydrogels to preserve its 3D structure and important molecular features, and then using detergents to extract lipids that make the tissue opaque.

In the new study, the researchers set out to make CLARITY suitable for whole organs and bodies, in part by making the process faster. First, they identified the optimal hydrogel that allows detergents to quickly remove lipids from tissue using an approach named passive CLARITY technique (PACT). To markedly speed up the clearing process without causing tissue damage, they introduced an innovative procedure called perfusion-assisted agent release in situ (PARS), which involves directly delivering the hydrogel and clearing reagents into the bloodstream of intact rodents. The reagents diffused throughout the tissues and completely clarified organs such as the kidney, heart, lung, and intestine within 2 to 3 days, while the whole brain and entire body cleared within 2 weeks.

The (A) dorsal and (B) ventral view of whole Thy1-eYFP mouse after PARS clearing with 8 percent SDS for one week showed good optical transparency of whole body. Arrowhead in (B) points to cleared kidney. (C) The image of the brain for the same mouse. Images were taken using bright field camera. (Credit: Cell, Yang et al.)The researchers also developed a recipe for refractive index matching solution (RIMS), which enables the long-term storage of cleared tissue and imaging thick, cleared tissue using a conventional confocal microscope. The new methods allow for the analysis of intact connections between cells as well as structures and molecules within single cells using standard genetic and molecular biology techniques. “Our easy-to-use tissue clearing protocols, which employ readily available and cost-effective reagents and equipment, will make the subcellular interrogation of large tissue samples an accessible undertaking within the broader research and clinical communities,” Gradinaru says.

Related Articles Read More >

An illustration of Embolization Inc.'s Nitinol Enhanced Device (NED).
This nitinol vascular embolization device has another shape memory material up its sleeve
A photo of nitinol, a nickel-titanium alloy used for medical devices such as stents, heart valves, catheters and orthopedics.
What is nitinol and where is it used?
July 2025 edition: The Surgical Robotics issue, featuring Capstan Medical, J&J and Zimmer Biomet
A photo of Capstan Medical's mitral valve implant, which uses nitinol.
Capstan Medical’s R&D head discusses the heart valve and robotics startup’s tech, engineering challenges and solutions, advice for others in medtech and how to join his team
“mdo
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest medical device business news, application and technology trends.

DeviceTalks Weekly

See More >

MDO Digital Edition

Digital Edition

Subscribe to Medical Design & Outsourcing. Bookmark, share and interact with the leading medical design engineering magazine today.

MEDTECH 100 INDEX

Medtech 100 logo
Market Summary > Current Price
The MedTech 100 is a financial index calculated using the BIG100 companies covered in Medical Design and Outsourcing.
DeviceTalks

DeviceTalks is a conversation among medical technology leaders. It's events, podcasts, webinars and one-on-one exchanges of ideas & insights.

DeviceTalks

New MedTech Resource

Medical Tubing

MassDevice

Mass Device

The Medical Device Business Journal. MassDevice is the leading medical device news business journal telling the stories of the devices that save lives.

Visit Website
MDO ad
Medical Design and Outsourcing
  • MassDevice
  • DeviceTalks
  • MedTech100 Index
  • Medical Tubing + Extrusion
  • Medical Design Sourcing
  • Drug Delivery Business News
  • Drug Discovery & Development
  • Pharmaceutical Processing World
  • R&D World
  • About Us/Contact
  • Advertise With Us
  • Subscribe to Print Magazine
  • Subscribe to our E-Newsletter
  • Listen to our Weekly Podcasts
  • Join our DeviceTalks Tuesdays Discussion

Copyright © 2025 WTWH Media, LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media LLC. Site Map | Privacy Policy | RSS

Search Medical Design & Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Supplies and Components Index
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • MedTech Resources
    • Medtech Events in 2025
    • The 2024 Medtech Big 100
    • Medical Device Handbook
    • MedTech 100 Index
    • Subscribe to Print Magazine
    • DeviceTalks
    • Digital Editions
    • eBooks
    • Educational Assets
    • Manufacturer Search
    • Podcasts
    • Print Subscription
    • Webinars / Digital Events
    • Whitepapers
    • Voices
    • Views
    • Video
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Women in Medtech
  • Advertise
  • Subscribe