Medical Design and Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Supplies and Components Index
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • MedTech Resources
    • Medtech Events in 2025
    • The 2024 Medtech Big 100
    • Medical Device Handbook
    • MedTech 100 Index
    • Subscribe to Print Magazine
    • DeviceTalks
    • Digital Editions
    • eBooks
    • Educational Assets
    • Manufacturer Search
    • Podcasts
    • Print Subscription
    • Webinars / Digital Events
    • Whitepapers
    • Voices
    • Views
    • Video
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Women in Medtech
  • Advertise
  • Subscribe

Severing Nerves May Shrink Stomach Cancers

August 21, 2014 By Columbia University

Botox injections slow growth of tumors in mice

This image shows stomach cells (red) growing with nerve cells (fluorescent green) in a lab culture dish. (Credit: Lab of Timothy C. Wang, MD)Research from Columbia University Medical Center shows that nerves may play a critical role in stomach cancer growth and that blocking nerve signals using surgery or Botox (onabotulinumtoxinA) could be an effective treatment for the disease. The study was conducted by the laboratory of Timothy C. Wang, MD, in collaboration with Duan Chen, MD, PhD, in Norway and is published in today’s issue of Science Translational Medicine.

“Scientists have long observed that human and mouse cancers contain a lot of nerves in and around the tumor cells,” said Dr. Wang, the Dorothy L. and Daniel H. Silberberg Professor of Medicine at Columbia’s Herbert Irving Comprehensive Cancer Center. “We wanted to understand more about the role of nerves in the initiation and growth of cancer, by focusing on stomach cancer.”

Stomach cancer is the fourth-leading type of cancer and the second-highest contributor to cancer mortality worldwide, with a 5-year survival rate of less than 25 percent.

Using three different mouse models of stomach cancer, Dr. Wang’s team found that when they performed a procedure called a vagotomy to cut the nerves, the surgery significantly slowed tumor growth and increased survival rates. Removing nerve connections from only one side of the stomach allowed cancer to continue growing on the other side (with the intact nerves), providing further evidence of the importance of nerves in tumor growth.

Botox is taken in by the nerves, where it prevents the release of neurotransmitters. (Credit: Columbia University Medical Center)Dr. Wang’s team then tried to block transmission of nerve signals pharmacologically. They found that when they injected Botox into mice, the drug proved to be as effective as surgery at reducing stomach cancer growth. “We found that blocking the nerve signals makes the cancer cells more vulnerable—it removes one of the key factors that regulate their growth,” said Dr. Wang.

Botox® prevents nerve cells from releasing a neurotransmitter called acetylcholine. In the case of cosmetic treatment, for example, blocking acetylcholine helps to lessen facial wrinkles by causing temporary paralysis of the muscles. Because acetylcholine also ordinarily stimulates cell division, using Botox® to prevent acetylcholine release might help slow the growth of cancer.

Dr. Wang’s team also found evidence of the effectiveness of targeting nerves for cancer treatment in human patients when they compared 37 patients who had a recurrence of stomach cancer many years after surgery. Of the 13 patients who had had a vagotomy as part of their procedure, in all but one case, tumors did not develop in regions where the nerve connections had been severed. By contrast, tumors were found in the same region of the stomach in all 24 patients who had not had a vagotomy.

This image shows cells from the anterior (left) and posterior (right) halves of the stomach of mice with cancer. Only the anterior stomach half was injected with Botox. (Credit: Lab of Timothy C. Wang, MD)Next, Dr. Wang’s team plans to investigate the effectiveness of nerve-targeted therapy used in combination with other cancer treatments. Initial experiments have shown that blocking nerves makes cancer cells more vulnerable to chemical agents. Botox used in combination with chemotherapy in mice increases survival rates up to 35 percent, compared with chemotherapy alone.

A limitation of the current studies is that they focus primarily on early stages of stomach cancer. “In the future, we’d really like to look at how we can use this method of targeting nerves to stop the growth of more advanced tumors,” Dr. Wang said. His laboratory hopes to develop drugs that block neurotransmitter receptors. This approach would be more effective than surgery or Botox on more invasive forms on cancer, as such drugs would be able reach cells that have broken away from the main tumor.

Related Articles Read More >

Carnegie Mellon University EEG-based BCI to control robotic hand
Non-invasive BCI enables robotic hand dexterity
A photo of nitinol, a nickel-titanium alloy used for medical devices such as stents, heart valves, catheters and orthopedics.
What is nitinol and where is it used?
How this device broke through the blood-brain barrier
A photo of the miniature Auxilium Biotechnologies implants made on the International Space Station.
Implants 3D-printed in space could enable nerve regeneration
“mdo
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest medical device business news, application and technology trends.

DeviceTalks Weekly

See More >

MDO Digital Edition

Digital Edition

Subscribe to Medical Design & Outsourcing. Bookmark, share and interact with the leading medical design engineering magazine today.

MEDTECH 100 INDEX

Medtech 100 logo
Market Summary > Current Price
The MedTech 100 is a financial index calculated using the BIG100 companies covered in Medical Design and Outsourcing.
DeviceTalks

DeviceTalks is a conversation among medical technology leaders. It's events, podcasts, webinars and one-on-one exchanges of ideas & insights.

DeviceTalks

New MedTech Resource

Medical Tubing

MassDevice

Mass Device

The Medical Device Business Journal. MassDevice is the leading medical device news business journal telling the stories of the devices that save lives.

Visit Website
MDO ad
Medical Design and Outsourcing
  • MassDevice
  • DeviceTalks
  • MedTech100 Index
  • Medical Tubing + Extrusion
  • Medical Design Sourcing
  • Drug Delivery Business News
  • Drug Discovery & Development
  • Pharmaceutical Processing World
  • R&D World
  • About Us/Contact
  • Advertise With Us
  • Subscribe to Print Magazine
  • Subscribe to our E-Newsletter
  • Listen to our Weekly Podcasts
  • Join our DeviceTalks Tuesdays Discussion

Copyright © 2025 WTWH Media, LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media LLC. Site Map | Privacy Policy | RSS

Search Medical Design & Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Supplies and Components Index
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • MedTech Resources
    • Medtech Events in 2025
    • The 2024 Medtech Big 100
    • Medical Device Handbook
    • MedTech 100 Index
    • Subscribe to Print Magazine
    • DeviceTalks
    • Digital Editions
    • eBooks
    • Educational Assets
    • Manufacturer Search
    • Podcasts
    • Print Subscription
    • Webinars / Digital Events
    • Whitepapers
    • Voices
    • Views
    • Video
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Women in Medtech
  • Advertise
  • Subscribe