Medical Design and Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Supplies and Components Index
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • MedTech Resources
    • Medtech Events in 2025
    • The 2024 Medtech Big 100
    • Medical Device Handbook
    • MedTech 100 Index
    • Subscribe to Print Magazine
    • DeviceTalks
    • Digital Editions
    • eBooks
    • Educational Assets
    • Manufacturer Search
    • Podcasts
    • Print Subscription
    • Webinars / Digital Events
    • Whitepapers
    • Voices
    • Views
    • Video
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Women in Medtech
  • Advertise
  • Subscribe

Smart Drug Design to Prevent Malaria Treatment Resistance

May 13, 2019 By The Francis Crick Institute

Malaria treatment resistance could be avoided by studying how resistance evolves during drug development, according to a new paper published in Cell Chemical Biology.

In a study led by Tony Holder’s lab at the Crick and Ed Tate’s satellite lab at the Crick and his lab at Imperial College London, scientists generated malaria parasites resistant to a promising new class of candidate antimalarial drugs. By analysing the structural changes behind the resistance, they identified novel compounds that were immune to this mechanism of resistance.

Their findings could form the basis of the next generation of combination therapies, which are urgently needed to counter emerging widespread resistance to existing treatments.

“Evolutionary resistance to frontline treatment is inevitable, it’s just a question of time,” says Tony Holder, Group Leader at the Crick and senior author of the paper. “By factoring resistance studies into early drug design, we can safeguard from resistance in the years to come. Rather than being on the back foot, we can plan for and prevent resistance.”

Interdisciplinary science

Malaria remains one of the world’s most devastating infectious diseases, claiming hundreds of thousands of lives each year. The team set out to study resistance mechanisms in the deadliest malaria parasite, Plasmodium falciparum.

In P. falciparum, the ‘NMT’ enzyme is vital for a range of functions including invading human red blood cells, where the parasites divide and multiply. Compounds that block this enzyme are currently being developed in the hope that they could form the basis of new medicines against malaria.

In this study, the team detected natural resistance in some P. falciparum parasites in the lab after just a few weeks of administering NMT inhibitors. By comparing the genetic makeup of the resistant and non-resistant strains, they were able to detect a small mutation. Using gene editing, they confirmed the mutation was responsible for the acquired resistance.

Using X-ray crystallography, the researchers visualised the structural change caused by the mutation. Making use of expertise in the Crick-GSK LinkLabs, the team used these structural insights to identify compounds that target a different part of the parasite NMT enzyme, and therefore evade the same resistance mechanism..

“Taking an interdisciplinary approach, we were able to identify compounds that evade parasite resistance, making them ideal candidates for a potential combination therapy against malaria,” explains Anja Schlott, joint Crick/Imperial Ph.D. student and first author of the paper.

Wider implications

Although the study was focussed on the malaria parasite P. falciparum, NMT inhibitors—and the potential for resistance—are also relevant for a wide range of parasites and fungi. Identifying combinations of compounds that could work alongside NMT inhibitors will be an important step to combat the evolution of resistance in numerous infectious diseases.

“Our approach of studying resistance mechanisms during drug development has wide reaching applications in medical science, including overcoming chemotherapy resistance in cancer” says Ed Tate, Professor of Chemical Biology at Imperial College London, who runs a satellite lab at the Crick, and senior author of the paper.

“The project was only made possible thanks to a unique combination of expertise including parasitology, chemical biology and drug discovery from all of our collaborators.”

Related Articles Read More >

Nanoscopic imaging showing human keratinocyte-matrix interaction.
These smart materials are key to advancing regenerative medicine
A series of before-and-after brain scans showing improvement in long COVID patients after hyperbaric oxygen therapy
Long COVID study finds potential in hyperbaric oxygen therapy
Rockwell Experience Center opens at Dean Kamen’s Advanced Regenerative Manufacturing Institute
What is microscale 3D printing? Lessons learned from Mayo Clinic
“mdo
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest medical device business news, application and technology trends.

DeviceTalks Weekly

See More >

MDO Digital Edition

Digital Edition

Subscribe to Medical Design & Outsourcing. Bookmark, share and interact with the leading medical design engineering magazine today.

MEDTECH 100 INDEX

Medtech 100 logo
Market Summary > Current Price
The MedTech 100 is a financial index calculated using the BIG100 companies covered in Medical Design and Outsourcing.
DeviceTalks

DeviceTalks is a conversation among medical technology leaders. It's events, podcasts, webinars and one-on-one exchanges of ideas & insights.

DeviceTalks

New MedTech Resource

Medical Tubing

MassDevice

Mass Device

The Medical Device Business Journal. MassDevice is the leading medical device news business journal telling the stories of the devices that save lives.

Visit Website
MDO ad
Medical Design and Outsourcing
  • MassDevice
  • DeviceTalks
  • MedTech100 Index
  • Medical Tubing + Extrusion
  • Medical Design Sourcing
  • Drug Delivery Business News
  • Drug Discovery & Development
  • Pharmaceutical Processing World
  • R&D World
  • About Us/Contact
  • Advertise With Us
  • Subscribe to Print Magazine
  • Subscribe to our E-Newsletter
  • Listen to our Weekly Podcasts
  • Join our DeviceTalks Tuesdays Discussion

Copyright © 2025 WTWH Media, LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media LLC. Site Map | Privacy Policy | RSS

Search Medical Design & Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Supplies and Components Index
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • MedTech Resources
    • Medtech Events in 2025
    • The 2024 Medtech Big 100
    • Medical Device Handbook
    • MedTech 100 Index
    • Subscribe to Print Magazine
    • DeviceTalks
    • Digital Editions
    • eBooks
    • Educational Assets
    • Manufacturer Search
    • Podcasts
    • Print Subscription
    • Webinars / Digital Events
    • Whitepapers
    • Voices
    • Views
    • Video
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Women in Medtech
  • Advertise
  • Subscribe