Medical Design and Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • Med Tech Resources
    • DeviceTalks Tuesdays
    • Digital Editions
    • eBooks
    • Manufacturer Search
    • Medical Device Handbook
    • MedTech 100 Index
    • Podcasts
    • Print Subscription
    • The Big 100
    • Webinars / Digital Events
    • Whitepapers
    • Video
  • 2022 Leadership in MedTech
    • 2022 Leadership Voting!
    • 2021 Winners
    • 2020 Winners
  • Women in Medtech

Stimulating Brain and Nerves at Synchronized Times Improves Hand Motor Function After Incomplete Spinal Cord Injury

November 30, 2012 By University of Pittsburgh School of Medicine

Timing is everything when it comes to inducing plasticity, or adaptation, in the spinal cord to improve voluntary movement, according to researchers at the University of Pittsburgh School of Medicine. In a new study published online today in Current Biology, they demonstrated that the temporal order at which impulses from the brain and a peripheral nerve arrived at the spinal cord is critical to improving hand strength and dexterity among patients with a chronic, incomplete spinal cord injury.

The number of survivors after spinal cord injury has risen dramatically over the past few decades. More than 50 percent of all spinal cord injury survivors experienced cervical lesions, which often result in impairments in hand and arm motor function, explained senior author Monica A. Perez, Ph.D., assistant professor, of the Department of Physical Medicine and Rehabilitation and the Systems Neuroscience Institute, Pitt School of Medicine.

“We are using noninvasive electrophysiological measures to understand the mechanisms of recovery and to determine how we can best enhance transmission of remaining descending pathways to muscles in patients with incomplete spinal cord injuries,” she said. “The ultimate aim is to improve the patient’s ability to execute daily functions, such as eating and grasping, as independently as possible.”

In the study, lead author Karen L. Bunday, Ph.D., a postdoctoral research scholar in Dr. Perez’s lab, paired transcranial magnetic stimulation of the hand area of the brain’s motor cortex and electrical stimulation of a peripheral nerve in the wrist that innervates hand muscles in 19 participants with chronic cervical spinal cord injury and 14 uninjured participants. The paired pulses, which are noninvasive and painless, were given 100 times over approximately 17 minutes.

Unlike other stimulation techniques currently used in clinical studies, the researchers targeted the synapse, or junction, between corticospinal fibers and spinal motor neurons.

The researchers found that when impulses from the motor cortex were precisely timed to arrive at the spinal cord 1-2 milliseconds before impulses from a peripheral nerve in the wrist reached spinal motor neurons, there were improvements in hand muscle activity, strength and manual dexterity in a precision grip task in spinal cord injured patients. They also observed an increase in corticospinal transmission in both injured and uninjured individuals that lasted for up to 80 minutes.

“We learned that we can noninvasively stimulate the brain and the peripheral nerve in a more efficient way,” Dr. Bunday said. “The timing between brain and peripheral nerve stimulation has to be precisely set in order to effectively improve voluntary movement. We customized the paired stimulation protocol to each person, which allowed us to take into account individual differences and conduction delays which are present after spinal cord injury.”

“We are now further examining the mechanisms of this plasticity and ways to make these changes more persistent,” Dr. Perez said. “In the future, this could provide a basis for developing some devices that people could take home and use to strengthen residual spinal cord synaptic connections to enhance muscle function.”

The project was funded by grant 1R01-10787799 from the National Institute of Neurological Disorders and Stroke, part of the National Institutes of Health, and the Paralyzed Veterans of America.

About the University of Pittsburgh School of Medicine
As one of the nation’s leading academic centers for biomedical research, the University of Pittsburgh School of Medicine integrates advanced technology with basic science across a broad range of disciplines in a continuous quest to harness the power of new knowledge and improve the human condition. Driven mainly by the School of Medicine and its affiliates, Pitt has ranked among the top 10 recipients of funding from the National Institutes of Health since 1997. In rankings recently released by the National Science Foundation, Pitt ranked fifth among all American universities in total federal science and engineering research and development support.

Likewise, the School of Medicine is equally committed to advancing the quality and strength of its medical and graduate education programs, for which it is recognized as an innovative leader, and to training highly skilled, compassionate clinicians and creative scientists well-equipped to engage in world-class research. The School of Medicine is the academic partner of UPMC, which has collaborated with the University to raise the standard of medical excellence in Pittsburgh and to position health care as a driving force behind the region’s economy. For more information about the School of Medicine, see www.medschool.pitt.edu.

 

Related Articles Read More >

DeepWell Digital Therapeutics Mike Wilson Ryan Douglas
How DeepWell is developing video games as tools for treating medical conditions
A woman with a small, handheld device in her lap with tubes that look like earphones plugged into her ears.
Ear-puffing device for migraine treatment wins FDA breakthrough designation
Abbott
Abbott launches upgraded digital health app for neurostimulation
Catheter delivery could enable better brain implants: Synchron’s neuroscience chief explains how

DeviceTalks Weekly.

May 20, 2022
DeviceTalks Boston Post-Game – Editors’ Top Moments, Insulet’s Eric Benjamin on future of Omnipod 5
See More >

MDO Digital Edition

Digital Edition

Subscribe to Medical Design & Outsourcing. Bookmark, share and interact with the leading medical design engineering magazine today.

MEDTECH 100 INDEX

Medtech 100 logo
Market Summary > Current Price
The MedTech 100 is a financial index calculated using the BIG100 companies covered in Medical Design and Outsourcing.
DeviceTalks

DeviceTalks is a conversation among medical technology leaders. It's events, podcasts, webinars and one-on-one exchanges of ideas & insights.

DeviceTalks

New MedTech Resource

Medical Tubing

Enewsletter Subscriptions

Enewsletter Subscriptions

MassDevice

Mass Device

The Medical Device Business Journal. MassDevice is the leading medical device news business journal telling the stories of the devices that save lives.

Visit Website
MDO ad
Medical Design and Outsourcing
  • MassDevice
  • DeviceTalks
  • MedTech 100 Index
  • Medical Tubing + Extrusion
  • Drug Delivery Business News
  • Drug Discovery & Development
  • Pharmaceutical Processing World
  • R&D World
  • About Us/Contact
  • Advertise With Us
  • Subscribe to Print Magazine
  • Subscribe to E-newsletter
  • Attend our Monthly Webinars
  • Listen to our Weekly Podcasts
  • Join our DeviceTalks Tuesdays Discussion

Copyright © 2022 WTWH Media, LLC. All Rights Reserved. Site Map | Privacy Policy | RSS

Search Medical Design & Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • Med Tech Resources
    • DeviceTalks Tuesdays
    • Digital Editions
    • eBooks
    • Manufacturer Search
    • Medical Device Handbook
    • MedTech 100 Index
    • Podcasts
    • Print Subscription
    • The Big 100
    • Webinars / Digital Events
    • Whitepapers
    • Video
  • 2022 Leadership in MedTech
    • 2022 Leadership Voting!
    • 2021 Winners
    • 2020 Winners
  • Women in Medtech