Medical Design and Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Supplies and Components Index
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • MedTech Resources
    • Medtech Events in 2025
    • The 2024 Medtech Big 100
    • Medical Device Handbook
    • MedTech 100 Index
    • Subscribe to Print Magazine
    • DeviceTalks
    • Digital Editions
    • eBooks
    • Manufacturer Search
    • Podcasts
    • Print Subscription
    • Webinars / Digital Events
    • Whitepapers
    • Voices
    • Video
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Women in Medtech
  • Advertise
  • Subscribe

Surface Tension Sorts Droplets for Biomedical Applications

July 20, 2016 By Colorado State University

Imagine being able to instantly diagnose diabetes, Ebola or some other disease, simply by watching how a droplet of blood moves on a surface.

That’s just one potential impact of new research led by Arun Kota, assistant professor in Colorado State University’s Department of Mechanical Engineering and the School of Biomedical Engineering. Kota’s lab makes coatings that repel not just water, but virtually any liquid, including oils and acids – a property called superomniphobicity.

They described their most recent innovation in engineered superomniphobic surfaces in Lab on a Chip, a publication of the Royal Society of Chemistry. Kota and his team engineered a simple and inexpensive device that can sort droplets of liquid based solely on the liquids’ varying surface tensions. They did it by making their device’s surface tunable, meaning they can manipulate its surface chemistry to turn up or turn down how well it repels liquids.

The researchers patterned a surface with titanium dioxide “nanoflowers” by decorating a pristine thin film of titanium in a nanoscale pattern that looks like a field of flowers under a scanning electron microscope. Exploiting titanium dioxide’s photocatalytic properties, they slightly changed the surface chemistry on various spots on the device by shining UV light on it for set lengths of time.

The result: a flat film that can sort liquid droplets based on their surface tensions, when the device is placed at a slight incline.

This concept could form the basis for a host of applications, from biosensors for point-of-care diagnostic platforms to lab-on-chip systems that can quickly distinguish between droplets of different chemicals, or diseased and non-diseased blood.

Fundamentally, Kota’s team is interested in the physics and chemistry of how and why some materials result in superomniphobicity, as well as perfecting the science behind superomniphobic surfaces.

“But we’re engineers, so we need applications that can translate commercially,” Kota said. “The dream is to create superomniphobic surfaces that are mechanically durable. People can make interesting surfaces, but the problem is that some aren’t very durable. If you can make something but it doesn’t last, who cares?”

Related Articles Read More >

An illustration showing the Edwards Lifesciences Sapien M3 transcatheter mitral valve replacement (TMVR) system's valve being placed in the heart. [Image courtesy of Edwards Lifesciences]
Q&A with Darshin Patel, who led the Edwards Lifesciences Sapien M3 TMVR system’s development
A photo of nitinol, a nickel-titanium alloy used for medical devices such as stents, heart valves, catheters and orthopedics.
What is nitinol and where is it used?
A photo of the Northwestern University pacemaker surrounded by grains of rice for scale [Photo courtesy of Northwestern]
Researchers develop tiny pacemaker that’s injectable and bioabsorbable
An illustration showing the Edwards Lifesciences Sapien M3 transcatheter mitral valve replacement (TMVR) system's dock being placed in the heart. [Image courtesy of Edwards Lifesciences]
The Edwards Lifesciences Sapien M3 transcatheter mitral valve replacement system uses nitinol in a new way
“mdo
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest medical device business news, application and technology trends.

DeviceTalks Weekly

See More >

MDO Digital Edition

Digital Edition

Subscribe to Medical Design & Outsourcing. Bookmark, share and interact with the leading medical design engineering magazine today.

MEDTECH 100 INDEX

Medtech 100 logo
Market Summary > Current Price
The MedTech 100 is a financial index calculated using the BIG100 companies covered in Medical Design and Outsourcing.
DeviceTalks

DeviceTalks is a conversation among medical technology leaders. It's events, podcasts, webinars and one-on-one exchanges of ideas & insights.

DeviceTalks

New MedTech Resource

Medical Tubing

MassDevice

Mass Device

The Medical Device Business Journal. MassDevice is the leading medical device news business journal telling the stories of the devices that save lives.

Visit Website
MDO ad
Medical Design and Outsourcing
  • MassDevice
  • DeviceTalks
  • MedTech100 Index
  • Medical Tubing + Extrusion
  • Medical Design Sourcing
  • Drug Delivery Business News
  • Drug Discovery & Development
  • Pharmaceutical Processing World
  • R&D World
  • About Us/Contact
  • Advertise With Us
  • Subscribe to Print Magazine
  • Subscribe to our E-Newsletter
  • Listen to our Weekly Podcasts
  • Join our DeviceTalks Tuesdays Discussion

Copyright © 2025 WTWH Media, LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media LLC. Site Map | Privacy Policy | RSS

Search Medical Design & Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Supplies and Components Index
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • MedTech Resources
    • Medtech Events in 2025
    • The 2024 Medtech Big 100
    • Medical Device Handbook
    • MedTech 100 Index
    • Subscribe to Print Magazine
    • DeviceTalks
    • Digital Editions
    • eBooks
    • Manufacturer Search
    • Podcasts
    • Print Subscription
    • Webinars / Digital Events
    • Whitepapers
    • Voices
    • Video
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Women in Medtech
  • Advertise
  • Subscribe