Medical Design and Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • Med Tech Resources
    • DeviceTalks Tuesdays
    • Digital Editions
    • eBooks
    • Manufacturer Search
    • Medical Device Handbook
    • MedTech 100 Index
    • Podcasts
    • Print Subscription
    • The Big 100
    • Webinars / Digital Events
    • Whitepapers
    • Video
  • 2022 Leadership in MedTech
    • 2022 Leadership Voting!
    • 2021 Winners
    • 2020 Winners
  • Women in Medtech

Technique May Help Regenerate Heart Cells to Treat Heart Disease

August 22, 2013 By Mary Beth O'Leary, Cell Press

This is a 3D image of a reprogrammed human cardiomyocyte-like cell derived from a human fibroblast, stained with a marker of the sarcomere, the beating unit of a muscle cell.  Credit: Stem Cell Reports, Fu et al.Researchers have developed a new technique that might one day be used to convert cells from heart disease patients into heart muscle cells that could act as a personalized treatment for their condition. The research is published online on August 22 in the journal of the International Society of Stem Cell Research, Stem Cell Reports, published by Cell Press.

The investigators previously reported the ability to convert scar-forming cells in the heart (called fibroblasts) into new, beating muscle in mice that had experienced heart attacks, thereby regenerating a heart from within. They accomplished this by injecting a combination of three genes into the animals’ fibroblast cells. “This gene therapy approach resulted in new cardiac muscle cells that beat in synchrony with neighboring muscle cells and ultimately improved the pumping function of the heart,” explains senior author Dr. Deepak Srivastava of the Gladstone Institutes and its affiliate, the University of California, San Francisco.

In this latest research, Dr. Srivastava and his colleagues coaxed fibroblasts from human fetal heart cells, embryonic stem cells, and newborn skin grown in the lab to become heart muscle cells using a slightly different combination of genes, representing an important step toward the use of this technology for regenerative medicine. Two other groups recently reported similar results using human fibroblasts.

The team envisions that introducing these genes into damaged hearts by gene therapy might convert fibroblasts into new muscle, thereby improving the function of the heart. “Over 50% of the cells in the human heart are fibroblasts, providing a vast pool of cells that could be harnessed to create new muscle,” says Dr. Srivastava. However, additional research is needed to improve the process of reprogramming adult human cells in this way. Ultimately, replacing the genes with drug-like molecules that produce a similar effect would make the therapy safer and easier to deliver.

Related Articles Read More >

Dexcom One
How Dexcom’s portfolio goes beyond highly-anticipated next-gen G7
A portrait of Stryker executive Siddarth Satish
How Stryker includes users for product design in the digital age
A Medtronic HVAD pump opened up to show the inner workings
Medtronic investigates HVAD pump welds after patient deaths
Galien Foundation 2022 nominees
18 of the world’s most innovative medical technologies

DeviceTalks Weekly.

May 20, 2022
DeviceTalks Boston Post-Game – Editors’ Top Moments, Insulet’s Eric Benjamin on future of Omnipod 5
See More >

MDO Digital Edition

Digital Edition

Subscribe to Medical Design & Outsourcing. Bookmark, share and interact with the leading medical design engineering magazine today.

MEDTECH 100 INDEX

Medtech 100 logo
Market Summary > Current Price
The MedTech 100 is a financial index calculated using the BIG100 companies covered in Medical Design and Outsourcing.
DeviceTalks

DeviceTalks is a conversation among medical technology leaders. It's events, podcasts, webinars and one-on-one exchanges of ideas & insights.

DeviceTalks

New MedTech Resource

Medical Tubing

Enewsletter Subscriptions

Enewsletter Subscriptions

MassDevice

Mass Device

The Medical Device Business Journal. MassDevice is the leading medical device news business journal telling the stories of the devices that save lives.

Visit Website
MDO ad
Medical Design and Outsourcing
  • MassDevice
  • DeviceTalks
  • MedTech 100 Index
  • Medical Tubing + Extrusion
  • Drug Delivery Business News
  • Drug Discovery & Development
  • Pharmaceutical Processing World
  • R&D World
  • About Us/Contact
  • Advertise With Us
  • Subscribe to Print Magazine
  • Subscribe to E-newsletter
  • Attend our Monthly Webinars
  • Listen to our Weekly Podcasts
  • Join our DeviceTalks Tuesdays Discussion

Copyright © 2022 WTWH Media, LLC. All Rights Reserved. Site Map | Privacy Policy | RSS

Search Medical Design & Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • Med Tech Resources
    • DeviceTalks Tuesdays
    • Digital Editions
    • eBooks
    • Manufacturer Search
    • Medical Device Handbook
    • MedTech 100 Index
    • Podcasts
    • Print Subscription
    • The Big 100
    • Webinars / Digital Events
    • Whitepapers
    • Video
  • 2022 Leadership in MedTech
    • 2022 Leadership Voting!
    • 2021 Winners
    • 2020 Winners
  • Women in Medtech