Medical Design and Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • Med Tech Resources
    • Subscribe to Print Magazine
    • DeviceTalks Tuesdays
    • Digital Editions
    • eBooks
    • Manufacturer Search
    • Medical Device Handbook
    • MedTech 100 Index
    • Podcasts
    • Print Subscription
    • The Big 100
    • Webinars / Digital Events
    • Whitepapers
    • Video
  • 2022 Leadership in MedTech
    • 2022 Leadership Voting!
    • 2021 Winners
    • 2020 Winners
  • Women in Medtech

The Sound of a Broken Heart

September 24, 2018 By Ken Kingery, Duke University

Physicians have been training to hear heart problems with stethoscopes for 200 years. Now engineers at Duke University are training computers hooked to the device’s digital descendants to hear heart problems undetectable to the human ear.

The project started when Ravi Karra, assistant professor of medicine at Duke University Medical Center, lost his stethoscope and replaced it with a more sensitive digital version. An expert in Left Ventricular Assist Devices (LVADs), he noticed a subtle difference in the way the devices sounded when patients were experiencing severe complications. Paired with his new digital stethoscope’s capability of recording data, the observation led to a new idea.

“I noticed that LVAD pumps that were doing well sounded slightly different than when they were having problems,” said Karra. “I thought maybe there was an opportunity here to catch complications at home before they become critical.”

An LVAD is a device used for patients that have reached end-stage heart failure. Implanted into the left ventricle through open-heart surgery, the battery-operated mechanical pump helps send blood throughout the rest of the body. The devices are implanted in up to 3,000 patients in the United States each year, and Duke Health has one of the largest LVAD programs in the world, supporting more than 300 patients.

While the devices do help prolong and provide a better quality of life, they come with their own set of problems. Nearly 60 percent of patients are readmitted within the first year of receiving an LVAD, most with complications that have already progressed to life-threatening stages.

One of the most common complications occurs when blood clots form in the device. An LVAD is basically a motor spinning a number of fan blades to push blood through the left ventricle. When clots begin to form, the motor must compensate, which creates audible changes that are governed by physics.

Working with colleague Priyesh Patel, assistant professor of medicine at the Duke University Medical Center, Karra turned to Duke Engineering to better understand the mechanical underpinnings of what he was hearing.

“When a lawnmower goes over a thick patch of grass, the rotor blades struggle to spin and the motor creates a different sound,” said Leslie Collins, professor of electrical and computer engineering at Duke. “Those changes in the acoustic spectrum can be expressed through principles governing pump frequency. We just have to be able to hear them and then work to understand what the audio cues mean for the patient.”

For help with understanding the audible changes, the growing collaboration brought in Boyla Mainsah, a research scientist in Duke’s Applied Machine Learning Lab. Their hope is that with enough audio clips of LVADs in action, machine learning can find patterns leading to the early detection of problems.

In a small proof-of-concept study, the researchers recorded the sounds of two patients’ LVADs that were dealing with acute blood coagulation both before and after the struggling device was replaced. After completing a thorough spectral analysis of the recordings, the researchers were able to show the same clear differences in the acoustic harmonic frequencies between normal LVAD devices and malfunctioning LVAD devices in both patients.

With that success in hand, the group has received a grant to conduct a larger study from the Duke Institute for Health Innovation (DIHI), which promotes innovation in health and health care through high-impact innovation pilot programs. Their plan is to have 24 patients take regular recordings of their LVAD for six months. Because 60 percent of patients experience complications within a year, the researchers should be able to obtain recordings of a malfunctioning LVAD well before symptoms appear.

“We’ve shown there’s a clear difference in the sound produced in the most devastating complications, but we want to be able to spot more minor complications in advance as well,” said Patel.

If successful, the method could prove useful for early detection in a wide range of medical conditions that have nothing to do with LVADs—or even the heart.

“Because of the way that pumps work, it should be relatively easy for machine-learning algorithms to analyze their acoustic signatures and identify major problems,” said Collins. “The idea could potentially be scaled up to much larger applications that affect a much broader portion of the population.”

Related Articles Read More >

Thermedical's Durablate device has a handle with a blue light at one end and a catheter for scarring heart tissue
New method of cardiac ablation used in first in-human trial for ventricular tachycardia
Wire mesh that has captured a blood clot
How an Embotrap stent retriever thrombectomy treats ischemic strokes
An automated external defibrillator (AED) on a medical demonstration dummy
FDA adds AEDs and other medical devices to shortage list
Harvard SEAS image of biohybrid model of a four-chambered heart engineered with focused rotary jet spinning or FRJS
Harvard researchers are closer to human heart fabrication

DeviceTalks Weekly.

August 5, 2022
DTW Medtronic's Greg Smith lays out supply chain strategies
See More >

MDO Digital Edition

Digital Edition

Subscribe to Medical Design & Outsourcing. Bookmark, share and interact with the leading medical design engineering magazine today.

MEDTECH 100 INDEX

Medtech 100 logo
Market Summary > Current Price
The MedTech 100 is a financial index calculated using the BIG100 companies covered in Medical Design and Outsourcing.
DeviceTalks

DeviceTalks is a conversation among medical technology leaders. It's events, podcasts, webinars and one-on-one exchanges of ideas & insights.

DeviceTalks

New MedTech Resource

Medical Tubing

Enewsletter Subscriptions

Enewsletter Subscriptions

MassDevice

Mass Device

The Medical Device Business Journal. MassDevice is the leading medical device news business journal telling the stories of the devices that save lives.

Visit Website
MDO ad
Medical Design and Outsourcing
  • MassDevice
  • DeviceTalks
  • MedTech100 Index
  • Medical Tubing + Extrusion
  • Medical Design Sourcing
  • Drug Delivery Business News
  • Drug Discovery & Development
  • Pharmaceutical Processing World
  • R&D World
  • About Us/Contact
  • Advertise With Us
  • Subscribe to Print Magazine
  • Subscribe to E-newsletter
  • Attend our Monthly Webinars
  • Listen to our Weekly Podcasts
  • Join our DeviceTalks Tuesdays Discussion

Copyright © 2022 WTWH Media, LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media LLC. Site Map | Privacy Policy | RSS

Search Medical Design & Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • Med Tech Resources
    • Subscribe to Print Magazine
    • DeviceTalks Tuesdays
    • Digital Editions
    • eBooks
    • Manufacturer Search
    • Medical Device Handbook
    • MedTech 100 Index
    • Podcasts
    • Print Subscription
    • The Big 100
    • Webinars / Digital Events
    • Whitepapers
    • Video
  • 2022 Leadership in MedTech
    • 2022 Leadership Voting!
    • 2021 Winners
    • 2020 Winners
  • Women in Medtech