Medical Design and Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • Med Tech Resources
    • Subscribe to Print Magazine
    • DeviceTalks Tuesdays
    • Digital Editions
    • eBooks
    • Manufacturer Search
    • Medical Device Handbook
    • MedTech 100 Index
    • Podcasts
    • Print Subscription
    • The Big 100
    • Webinars / Digital Events
    • Whitepapers
    • Video
  • 2022 Leadership in MedTech
    • 2022 Leadership Voting!
    • 2021 Winners
    • 2020 Winners
  • Women in Medtech

This Caltech-developed electronic skin is fully powered by sweat

April 24, 2020 By Sean Whooley

Caltech researchers are touting an “electronic skin” (e-skin) applied to real skin that can monitor health indicators with fuel from the body’s own waste products instead of batteries.

The e-skin, made from soft, flexible rubber, can be embedded with sensors for monitoring heart rate, body temperature, blood sugar levels and metabolic byproducts that are health indicators. Researchers published a paper describing the e-skin titled “Biofuel-powered soft electronic skin for multiplexed and wireless sensing” in the journal Science Robotics.

Instead of a battery, the e-skin runs on biofuel cells powered by human sweat, according to Caltech engineering professor Wei Gao.

“One of the major challenges with these kinds of wearable devices is on the power side,” Gao said in a news release. “Many people are using batteries, but that’s not very sustainable. Some people have tried using solar cells or harvesting the power of human motion, but we wanted to know, ‘Can we get sufficient energy from sweat to power the wearables?’ and the answer is yes.”

Human sweat contains high levels of chemical lactate that the fuel cells in the e-skin absorb to combine with oxygen from the atmosphere, generating water and pyruvate. During operation, the cells generate enough electricity to power sensors and a Bluetooth device to allow for the e-skin to wirelessly transmit readings from its sensors.

Gao noted that the e-skin also needs to last a long time with high-power intensity and minimal degradation. The biofuel cells are made from carbon nanotubes with a platinum/cobalt catalyst and composite mesh holding an enzyme to break down lactate, allowing the cells to generate continuous, stable power output over multiple days. Gao also plans to develop a variety of sensors so the e-skin can be used for multiple purposes.

“We want this system to be a platform,” Gao said. “In addition to being a wearable biosensor, this can be a human-machine interface. The vital signs and molecular information collected using this platform could be used to design and optimize next-generation prosthetics. “

Related Articles Read More >

A pulse oximeter device being used on a patient's finger
Senators seek post-market FDA study of pulse oximeters and skin color
Connected device design for the real world: Managing the development process
Dexcom One
How Dexcom’s portfolio goes beyond highly-anticipated next-gen G7
Rockley Photonics
Rockley Photonics announces $81.5M private placement

DeviceTalks Weekly.

August 12, 2022
DTW – Medtronic’s Mauri brings years of patient care to top clinical, regulatory, scientific post
See More >

MDO Digital Edition

Digital Edition

Subscribe to Medical Design & Outsourcing. Bookmark, share and interact with the leading medical design engineering magazine today.

MEDTECH 100 INDEX

Medtech 100 logo
Market Summary > Current Price
The MedTech 100 is a financial index calculated using the BIG100 companies covered in Medical Design and Outsourcing.
DeviceTalks

DeviceTalks is a conversation among medical technology leaders. It's events, podcasts, webinars and one-on-one exchanges of ideas & insights.

DeviceTalks

New MedTech Resource

Medical Tubing

Enewsletter Subscriptions

Enewsletter Subscriptions

MassDevice

Mass Device

The Medical Device Business Journal. MassDevice is the leading medical device news business journal telling the stories of the devices that save lives.

Visit Website
MDO ad
Medical Design and Outsourcing
  • MassDevice
  • DeviceTalks
  • MedTech100 Index
  • Medical Tubing + Extrusion
  • Medical Design Sourcing
  • Drug Delivery Business News
  • Drug Discovery & Development
  • Pharmaceutical Processing World
  • R&D World
  • About Us/Contact
  • Advertise With Us
  • Subscribe to Print Magazine
  • Subscribe to E-newsletter
  • Attend our Monthly Webinars
  • Listen to our Weekly Podcasts
  • Join our DeviceTalks Tuesdays Discussion

Copyright © 2022 WTWH Media, LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media LLC. Site Map | Privacy Policy | RSS

Search Medical Design & Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • Med Tech Resources
    • Subscribe to Print Magazine
    • DeviceTalks Tuesdays
    • Digital Editions
    • eBooks
    • Manufacturer Search
    • Medical Device Handbook
    • MedTech 100 Index
    • Podcasts
    • Print Subscription
    • The Big 100
    • Webinars / Digital Events
    • Whitepapers
    • Video
  • 2022 Leadership in MedTech
    • 2022 Leadership Voting!
    • 2021 Winners
    • 2020 Winners
  • Women in Medtech