Medical Design and Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Supplies and Components Index
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • MedTech Resources
    • Medtech Events in 2025
    • The 2024 Medtech Big 100
    • Medical Device Handbook
    • MedTech 100 Index
    • Subscribe to Print Magazine
    • DeviceTalks
    • Digital Editions
    • eBooks
    • Educational Assets
    • Manufacturer Search
    • Podcasts
    • Print Subscription
    • Webinars / Digital Events
    • Whitepapers
    • Voices
    • Video
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Women in Medtech
  • Advertise
  • Subscribe

This device could double stroke clot removal success

June 10, 2025 By Danielle Kirsh

Close-up view of a transparent vascular model held by fingers, showcasing the milli-spinner device — a tiny, hollow rotating tube with fins and slits designed to generate localized suction for shrinking blood clots without rupturing them.

[Image courtesy of Stanford University]

Stanford researchers have developed a new mechanical thrombectomy device that could improve how doctors treat stroke and other clot-related diseases.

The “milli-spinner” is a catheter-delivered tool that uses rotation and suction to compress and remove blood clots without breaking them apart. In preclinical studies, it restored blood flow on the first attempt in up to 90% of tough-to-treat clots, compared to 11% with current devices, potentially offering a safer and faster alternative for patients, according to the researchers.

“With existing technology, there’s no way to reduce the size of the clot. They rely on deforming and rupturing the clot to remove it,” said Renee Zhao, an assistant professor of mechanical engineering and senior author on the paper. “What’s unique about the milli-spinner is that it applies compression and shear forces to shrink the entire clot, dramatically reducing the volume without causing rupture.”

A new approach to an old challenge

During an ischemic stroke, a clot blocks blood flow to part of the brain. Existing thrombectomy devices, which vacuum or snare the clot, succeed on the first try only about half the time. Roughly 15% of attempts fail altogether.

The milli-spinner targets this problem using a different mechanical approach. Rather than pulling clots out intact or trying to break them up, the device compresses and compacts them.

It consists of a hollow, catheter-compatible tube that spins rapidly. A system of fins and slits near the tip creates localized suction that draws the clot against the spinning end. That combination of compression and shear forces compacts the fibrin into a tight ball.

In doing so, the device allows red blood cells trapped in the fibrin to escape and flow freely again. The remaining compact clot core is then suctioned out through the device.

“It works so well, for a wide range of clot compositions and sizes,” Zhao said. “Even for tough, fibrin-rich clots, which are impossible to treat with current technologies, our milli-spinner can treat them using this simple yet powerful mechanics concept to densify the fibrin network and shrink the clot.”

From propulsion to clot removal

The technology originated as an offshoot of Zhao’s work on millirobots, which are tiny machines designed to navigate the body and deliver targeted treatments. Initially conceived as a propulsion device, the milli-spinner’s ability to generate suction turned out to be critical.

“At first, we simply wondered whether this suction could help remove a blood clot,“ Zhao said. “But when we tested the spinner on a clot, we observed a striking clot color change, from red to white, along with a dramatic reduction in volume. Honestly, it felt like magic. We didn’t fully understand the mechanism at the time.“

That early success led to hundreds of design iterations, culminating in a device that performed well in both lab and animal models. The team has since launched a company to bring the technology to market.

Zhao’s team is also exploring other potential uses for the spinner’s suction-based mechanics, including removing kidney stone fragments and developing an untethered version that could swim through blood vessels to treat clots remotely.

“We’re exploring other biomedical applications for the milli-spinner design, and even possibilities beyond medicine,“ Zhao said. “There are some very exciting opportunities ahead.“

The device is not yet approved for use in humans, but the researchers say they are moving quickly toward trials.

“What makes this technology truly exciting is its unique mechanism to actively reshape and compact clots, rather than just extracting them,“ Zhao said. “We’re working to bring this into clinical settings, where it could significantly boost the success rate of thrombectomy procedures and save patients’ lives.“

About The Author

Danielle Kirsh

Danielle Kirsh is an award-winning journalist and senior editor for Medical Design & Outsourcing, MassDevice, and Medical Tubing + Extrusion, and the founder of Women in Medtech and lead editor for Big 100. She received her bachelor's degree in broadcast journalism and mass communication from Norfolk State University and is pursuing her master's in global strategic communications at the University of Florida. You can connect with her on Twitter and LinkedIn, or email her at dkirsh@wtwhmedia.com.

Related Articles Read More >

Four individuals stand smiling in front of the entrance to the Children's Tower at KK Women’s and Children’s Hospital. The person second from the left holds a small black device labeled BLIPI, designed for rapid point-of-care diagnostics. Two of the individuals wear blue medical scrubs, indicating their clinical roles.
New device uses single drop of blood to assess newborn immune health
A photo of the probiotic-powered dissolvable batteries.
Probiotics-powered bioresorbable battery can run more than 100 minutes, researchers say
A photo of Capstan Medical's mitral valve implant, which uses nitinol.
Capstan Medical’s R&D head discusses the heart valve and robotics startup’s tech, engineering challenges and solutions, advice for others in medtech and how to join his team
A photo of Highridge Medical CEO Rebecca Whitney.
Highridge Medical is betting on this spine tech
“mdo
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest medical device business news, application and technology trends.

DeviceTalks Weekly

See More >

MDO Digital Edition

Digital Edition

Subscribe to Medical Design & Outsourcing. Bookmark, share and interact with the leading medical design engineering magazine today.

MEDTECH 100 INDEX

Medtech 100 logo
Market Summary > Current Price
The MedTech 100 is a financial index calculated using the BIG100 companies covered in Medical Design and Outsourcing.
DeviceTalks

DeviceTalks is a conversation among medical technology leaders. It's events, podcasts, webinars and one-on-one exchanges of ideas & insights.

DeviceTalks

New MedTech Resource

Medical Tubing

MassDevice

Mass Device

The Medical Device Business Journal. MassDevice is the leading medical device news business journal telling the stories of the devices that save lives.

Visit Website
MDO ad
Medical Design and Outsourcing
  • MassDevice
  • DeviceTalks
  • MedTech100 Index
  • Medical Tubing + Extrusion
  • Medical Design Sourcing
  • Drug Delivery Business News
  • Drug Discovery & Development
  • Pharmaceutical Processing World
  • R&D World
  • About Us/Contact
  • Advertise With Us
  • Subscribe to Print Magazine
  • Subscribe to our E-Newsletter
  • Listen to our Weekly Podcasts
  • Join our DeviceTalks Tuesdays Discussion

Copyright © 2025 WTWH Media, LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media LLC. Site Map | Privacy Policy | RSS

Search Medical Design & Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Supplies and Components Index
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • MedTech Resources
    • Medtech Events in 2025
    • The 2024 Medtech Big 100
    • Medical Device Handbook
    • MedTech 100 Index
    • Subscribe to Print Magazine
    • DeviceTalks
    • Digital Editions
    • eBooks
    • Educational Assets
    • Manufacturer Search
    • Podcasts
    • Print Subscription
    • Webinars / Digital Events
    • Whitepapers
    • Voices
    • Video
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Women in Medtech
  • Advertise
  • Subscribe