Medical Design and Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Supplies and Components Index
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • MedTech Resources
    • Medtech Events in 2025
    • The 2024 Medtech Big 100
    • Medical Device Handbook
    • MedTech 100 Index
    • Subscribe to Print Magazine
    • DeviceTalks
    • Digital Editions
    • eBooks
    • Educational Assets
    • Manufacturer Search
    • Podcasts
    • Print Subscription
    • Webinars / Digital Events
    • Whitepapers
    • Voices
    • Video
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Women in Medtech
  • Advertise
  • Subscribe

Toward Precision Medicine: First Comprehensive Look At Human Retinal Cell Diversity

March 22, 2018 By Indiana University - Purdue University Indianapolis

In work that brings researchers closer to the goal of precision medicine approaches to treating glaucoma and other neurodegenerative vision diseases, a new IUPUI study has, for the first time, been able to identify a wide variety of previously unknown cell subtypes in the human eye. The cells—called retinal ganglion cells, also known as RGCs—are the neurons that take visual information from the eye to the brain for processing and interpretation, which is how we see things.

“Although RGCs have been extensively studied in the past, they are not all the same. There are more than 30 different subtypes of these cells,” said study senior author Jason Meyer, associate professor of biology in the School of Science at IUPUI and a primary investigator with the Stark Neurosciences Research Institute at the Indiana University School of Medicine. “Each of these subtypes is thought to have very different functions, and they respond differently in glaucoma and other diseases that affect RGCs. Some of these cell subtypes are more susceptible to damage than others.”

“With our new comprehensive understanding of the diversity of RGCs, we have set the stage for future studies to look at these cells through a more critical lens, with the ultimate goal of more-tailored drug development and treatment strategies for cells that are damaged or lost in glaucoma and other neurodegenerative vision disorders,” Meyer said.

The researchers studied RGCs that they derived from pluripotent stem cells. In past work, the Meyer laboratory in the School of Science successfully demonstrated the ability to turn stem cells derived from human skin cells into RGCs.

“The methods used in this work will allow us to study how neurodegenerative diseases or optic-nerve injuries—like those suffered by soldiers in combat or athletes in contact sports—affect different subtypes of RGCs,” Meyer said. “In the future, we will likely be able to customize cell-replacement strategies to replace those specific RGC subtypes for therapies.”

Prior to the study, knowledge of RGC subtypes in humans had been limited. Through methods developed by Kirstin Langer, the IUPUI doctoral student who is the first author of the new study, the researchers were able to identify and characterize these major RGC subtypes.

“The study of different RGC subtypes in human-derived cells allows for more in-depth studies of how these RGCs develop, along with things like how these RGC subtypes may be differently affected by diseases or injuries of the eye,” Langer said. “We hope this will allow us to develop better-targeted treatments for patients in the future.”

“Retinal Ganglion Cell Diversity and Subtype Specification from Human Pluripotent Stem Cells” is published in the peer-reviewed journal Stem Cell Reports. Co-authors, in addition to Meyer and Langer, are Sarah K. Ohlemacher and Clarisse M. Fligor of IUPUI and M. Joseph Phillips, Peng Jiang and David M. Gamm of the University of Wisconsin.

Related Articles Read More >

Biological Toolkit of Cells Assembled Like Legos
New Technology Keeps Eye On Babies’ Movement In The Womb
Robots Won’t Replace Teachers But Can Boost Children’s Education
Artificial Placenta Created In Laboratory
“mdo
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest medical device business news, application and technology trends.

DeviceTalks Weekly

See More >

MDO Digital Edition

Digital Edition

Subscribe to Medical Design & Outsourcing. Bookmark, share and interact with the leading medical design engineering magazine today.

MEDTECH 100 INDEX

Medtech 100 logo
Market Summary > Current Price
The MedTech 100 is a financial index calculated using the BIG100 companies covered in Medical Design and Outsourcing.
DeviceTalks

DeviceTalks is a conversation among medical technology leaders. It's events, podcasts, webinars and one-on-one exchanges of ideas & insights.

DeviceTalks

New MedTech Resource

Medical Tubing

MassDevice

Mass Device

The Medical Device Business Journal. MassDevice is the leading medical device news business journal telling the stories of the devices that save lives.

Visit Website
MDO ad
Medical Design and Outsourcing
  • MassDevice
  • DeviceTalks
  • MedTech100 Index
  • Medical Tubing + Extrusion
  • Medical Design Sourcing
  • Drug Delivery Business News
  • Drug Discovery & Development
  • Pharmaceutical Processing World
  • R&D World
  • About Us/Contact
  • Advertise With Us
  • Subscribe to Print Magazine
  • Subscribe to our E-Newsletter
  • Listen to our Weekly Podcasts
  • Join our DeviceTalks Tuesdays Discussion

Copyright © 2025 WTWH Media, LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media LLC. Site Map | Privacy Policy | RSS

Search Medical Design & Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Supplies and Components Index
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • MedTech Resources
    • Medtech Events in 2025
    • The 2024 Medtech Big 100
    • Medical Device Handbook
    • MedTech 100 Index
    • Subscribe to Print Magazine
    • DeviceTalks
    • Digital Editions
    • eBooks
    • Educational Assets
    • Manufacturer Search
    • Podcasts
    • Print Subscription
    • Webinars / Digital Events
    • Whitepapers
    • Voices
    • Video
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Women in Medtech
  • Advertise
  • Subscribe