Medical Design and Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Supplies and Components Index
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • MedTech Resources
    • Medtech Events in 2025
    • The 2024 Medtech Big 100
    • Medical Device Handbook
    • MedTech 100 Index
    • Subscribe to Print Magazine
    • DeviceTalks
    • Digital Editions
    • eBooks
    • Educational Assets
    • Manufacturer Search
    • Podcasts
    • Print Subscription
    • Webinars / Digital Events
    • Whitepapers
    • Voices
    • Views
    • Video
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Women in Medtech
  • Advertise
  • Subscribe

Transplanted Cells Could Treat Alzheimer’s

November 3, 2015 By Cell Transplantation Center of Excellence for Aging and Brain Repair

The study found transplanted cells migrated to brain tissue, were retained and did not promote tumor growth.Stem cell transplantation may offer a viable Alzheimer’s disease (AD) treatment, and a research team in Tampa, Florida has injected human umbilical blood cells (HUCBCs) into mice modeled with AD to investigate how the cells are distributed and retained in tissues, including the brain. Their study, a preliminary investigation to better understand the bioavailability, safety, and feasibility of using human umbilical cord blood cells (HUCBCs) to treat AD, found that the transplanted cells migrated to brain tissue, were retained there for up to 30 days, and did not promote the growth of tumors.

Although previous in vivo studies in which stem cell transplantation was used to treat symptoms associated with AD in test animals revealed a reduction in cognitive deficits, it is important to determine whether the transplanted cells successfully migrate to the target tissue and are retained there without promoting tumor growth.

“Our previous studies with AD modeled mice demonstrated that multiple intravenous injections of HUCBCs can reduce behavioral impairment, mitigate amyloid-β plaque formation, and modulate the immune response,” said the study’s lead author, Dr. Jared Ehrhart of Saneron CCEL Therapeutics Inc. in Tampa, FL. “In this study, we attempted to ascertain the distribution of HUCBCs in multiple organs, tumorigenic potential of the cells, and ability of the cells to infiltrate the brain parenchyma.”

While the researchers were able to determine that HUCBCs were distributed widely throughout the bodies of the test animals within 24 hours following a single dose of cells, the HUCBCs also appeared to persist in the central nervous system for at least one month after transplantation. Additionally, researchers did not find any tumors in the animals that were transplanted with HUCBCs. Tumor formation is a serious drawback to stem cell transplantation that often occurs with other varieties of cells.

Their study results showed that even after 30 days the HUCBCs were “broadly detected both in the brain and several peripheral organs, including the liver, kidneys and bone marrow.” Their findings indicated that a minimally invasive procedure, such as intravenous injection, can be implemented and yield significant therapeutic effects.

“HUCBCs may confer therapeutic effects through modulation of the inflammatory response that becomes up-regulated after the onset of AD,” said the researchers. “However, delivering the cells presents a challenge due to the need for an invasive procedure, such as intracerebroventricular injection, and concerns about accumulation of the cells in peripheral organs. We found that while some HUCBCs were detectable in peripheral organs, a significant amount were also found in the brain, suggesting that cells were able to cross the blood-brain barrier (BBB).”

“HUCBCs are a very prolific source of non-embryonic stem cells, making them attractive candidates for future transplantation studies for neurological diseases or injuries,” said Dr. John R. Sladek, Jr., professor of Neurology, Pediatrics, and Neuroscience, Department of Neurology at the University of Colorado School of Medicine and section editor for Cell Transplantation. “Since the study co-authors used a mixed population of mononuclear cells isolated from whole cord-blood, their subsequent studies should focus on pinpointing which subpopulation of cells are responsible for the observed improvement in disease pathology. Regardless of the remaining questions, data reported in this study put forth the exciting notion that therapeutic effects can be attained after a single low dose of cells and has set the stage for more in-depth analyses.”

Related Articles Read More >

This is a screenshot of the remote robotic surgery technical guidelines appearing in the World Journal of Surgery.
New technical guidelines set to advance remote robotic surgery
An illustration of Embolization Inc.'s Nitinol Enhanced Device (NED).
This nitinol vascular embolization device has another shape memory material up its sleeve
A photo of nitinol, a nickel-titanium alloy used for medical devices such as stents, heart valves, catheters and orthopedics.
What is nitinol and where is it used?
A photo of Johnson & Johnson MedTech's Polyphonic-connected Monarch robotics-assisted bronchoscopy system in the lab.
J&J MedTech’s global head of digital wants to fund your AI project
“mdo
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest medical device business news, application and technology trends.

DeviceTalks Weekly

See More >

MDO Digital Edition

Digital Edition

Subscribe to Medical Design & Outsourcing. Bookmark, share and interact with the leading medical design engineering magazine today.

MEDTECH 100 INDEX

Medtech 100 logo
Market Summary > Current Price
The MedTech 100 is a financial index calculated using the BIG100 companies covered in Medical Design and Outsourcing.
DeviceTalks

DeviceTalks is a conversation among medical technology leaders. It's events, podcasts, webinars and one-on-one exchanges of ideas & insights.

DeviceTalks

New MedTech Resource

Medical Tubing

MassDevice

Mass Device

The Medical Device Business Journal. MassDevice is the leading medical device news business journal telling the stories of the devices that save lives.

Visit Website
MDO ad
Medical Design and Outsourcing
  • MassDevice
  • DeviceTalks
  • MedTech100 Index
  • Medical Tubing + Extrusion
  • Medical Design Sourcing
  • Drug Delivery Business News
  • Drug Discovery & Development
  • Pharmaceutical Processing World
  • R&D World
  • About Us/Contact
  • Advertise With Us
  • Subscribe to Print Magazine
  • Subscribe to our E-Newsletter
  • Listen to our Weekly Podcasts
  • Join our DeviceTalks Tuesdays Discussion

Copyright © 2025 WTWH Media, LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media LLC. Site Map | Privacy Policy | RSS

Search Medical Design & Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Supplies and Components Index
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • MedTech Resources
    • Medtech Events in 2025
    • The 2024 Medtech Big 100
    • Medical Device Handbook
    • MedTech 100 Index
    • Subscribe to Print Magazine
    • DeviceTalks
    • Digital Editions
    • eBooks
    • Educational Assets
    • Manufacturer Search
    • Podcasts
    • Print Subscription
    • Webinars / Digital Events
    • Whitepapers
    • Voices
    • Views
    • Video
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Women in Medtech
  • Advertise
  • Subscribe