Medical Design and Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • Med Tech Resources
    • DeviceTalks Tuesdays
    • Digital Editions
    • eBooks
    • Manufacturer Search
    • Medical Device Handbook
    • MedTech 100 Index
    • Podcasts
    • Print Subscription
    • The Big 100
    • Webinars / Digital Events
    • Whitepapers
    • Video
  • 2022 Leadership in MedTech
    • 2022 Leadership Voting!
    • 2021 Winners
    • 2020 Winners
  • Women in Medtech

Treatments for Sickle Cell Diease Could Be Helped by Discovery

August 8, 2016 By Carnegie Mellon University

An interdisciplinary, international group of researchers has found new biophysical markers that could help improve the understanding of treatments for sickle cell disease, a step toward developing better methods for treating the inherited blood disorder that affects an estimated 80,000 to 100,000 Americans each year.

“There is a critical need for patient-specific biomarkers that can be used to assess the effectiveness of treatments for sickle cell disease,” said Subra Suresh, president of Carnegie Mellon University and co-author of the study. “This study shows how techniques commonly used in engineering and physics can help us to better understand how the red blood cells in people with sickle cell disease react to treatment, which could lead to improved diagnostics and therapies.”

People with sickle cell disease have an abnormal form of hemoglobin, a protein found in red blood cells that carry oxygen throughout the body. Normal red blood cells are flexible discs that easily bend and stretch to flow through the body’s narrow blood vessels. In sickle cell disease, the abnormal hemoglobin forms fibers that cause the blood cells to take on a flattened, sickled shape and stiffen when they lose oxygen.

This change in shape and rigidity causes the red blood cells to be stuck in the blood vessels and prevents the transport of oxygen to the surrounding tissue. This can cause anemia and extreme pain and impact the health of the body’s tissue and organs.

Researchers have established new biomarkers that could help improve the understanding of sickle cell disease treatments. (Credit: Carnegie Mellon University)

Currently, hydroxyurea is the only FDA-approved drug for sickle cell disease. The drug reduces sickling in red blood cells and is used to treat pain and reduce the need for blood transfusions in some patients, but it does not work in all patients.

 Researchers have been divided over what mechanisms cause the drug to work. Some believe it works by reactivating fetal hemoglobin, which is better at transporting oxygen than the abnormal hemoglobin that causes sickling. Others believe it works by increasing the volume of red blood cells, reducing the concentration of sickle hemoglobin.

In the current study, the international research team evaluated the biophysical properties — shape, surface area and volume —  and biomechanical properties —  flexibility and stickiness —  of red blood cells under normal oxygenated conditions using electromagnetic waves to measure small differences in physical properties. The technique, known as common-path interferometric microscopy, allowed researchers to get a three-dimensional view of the cells.

Using blood samples from patients with sickle cell disease, the researchers separated red blood cells into four groups based on their density. Normal, disc-shaped red blood cells were the least dense, while severely sickled cells were the densest. They then took samples from people receiving hydroxyurea treatment and those not receiving treatment.

The red blood cells of those receiving treatment showed an improvement in all of the biophysical and biomechanical properties tested across all density levels. Furthermore, improvement in the physical properties of red blood cells of people treated with hydroxyurea correlated more with an increase in the red blood cell volume than with levels of fetal hemoglobin.

The researchers hope that these biophysical markers can be combined with biochemical and molecular-level markers to assess things like the severity of a patient’s sickle cell disease, determine whether or not a patient will respond to hydroxyurea treatment and monitor the effectiveness of that treatment.

Related Articles Read More >

Dexcom One
How Dexcom’s portfolio goes beyond highly-anticipated next-gen G7
A portrait of Stryker executive Siddarth Satish
How Stryker includes users for product design in the digital age
A Medtronic HVAD pump opened up to show the inner workings
Medtronic investigates HVAD pump welds after patient deaths
Galien Foundation 2022 nominees
18 of the world’s most innovative medical technologies

DeviceTalks Weekly.

May 13, 2022
Our Pre-Post-DeviceTalks Boston episode, also MedtronicTalks replay with Gastro CMO Austin Chiang
See More >

MDO Digital Edition

Digital Edition

Subscribe to Medical Design & Outsourcing. Bookmark, share and interact with the leading medical design engineering magazine today.

MEDTECH 100 INDEX

Medtech 100 logo
Market Summary > Current Price
The MedTech 100 is a financial index calculated using the BIG100 companies covered in Medical Design and Outsourcing.
DeviceTalks

DeviceTalks is a conversation among medical technology leaders. It's events, podcasts, webinars and one-on-one exchanges of ideas & insights.

DeviceTalks

New MedTech Resource

Medical Tubing

Enewsletter Subscriptions

Enewsletter Subscriptions

MassDevice

Mass Device

The Medical Device Business Journal. MassDevice is the leading medical device news business journal telling the stories of the devices that save lives.

Visit Website
MDO ad
Medical Design and Outsourcing
  • MassDevice
  • DeviceTalks
  • MedTech 100 Index
  • Medical Tubing + Extrusion
  • Drug Delivery Business News
  • Drug Discovery & Development
  • Pharmaceutical Processing World
  • R&D World
  • About Us/Contact
  • Advertise With Us
  • Subscribe to Print Magazine
  • Subscribe to E-newsletter
  • Attend our Monthly Webinars
  • Listen to our Weekly Podcasts
  • Join our DeviceTalks Tuesdays Discussion

Copyright © 2022 WTWH Media, LLC. All Rights Reserved. Site Map | Privacy Policy | RSS

Search Medical Design & Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • Med Tech Resources
    • DeviceTalks Tuesdays
    • Digital Editions
    • eBooks
    • Manufacturer Search
    • Medical Device Handbook
    • MedTech 100 Index
    • Podcasts
    • Print Subscription
    • The Big 100
    • Webinars / Digital Events
    • Whitepapers
    • Video
  • 2022 Leadership in MedTech
    • 2022 Leadership Voting!
    • 2021 Winners
    • 2020 Winners
  • Women in Medtech