Medical Design and Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Supplies and Components Index
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • MedTech Resources
    • Medtech Events in 2025
    • The 2024 Medtech Big 100
    • Medical Device Handbook
    • MedTech 100 Index
    • Subscribe to Print Magazine
    • DeviceTalks
    • Digital Editions
    • eBooks
    • Educational Assets
    • Manufacturer Search
    • Podcasts
    • Print Subscription
    • Webinars / Digital Events
    • Whitepapers
    • Voices
    • Views
    • Video
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Women in Medtech
  • Advertise
  • Subscribe

UBC Researcher Looks to The Future of Bone Replacements

August 18, 2017 By University of British Columbia

Hossein Montazerian, research assistant with UBC Okanagan’s School of Engineering, demonstrates the artificial bone design that can be made with a 3-D printer. (Credit: UBC Okanagan)

A UBC Okanagan researcher has discovered a new artificial bone design that can be customized and made with a 3D printer for stronger, safer and more effective bone replacements.

Hossein Montazerian, research assistant with UBC Okanagan’s School of Engineering, has identified a way to model and create artificial bone grafts that can be custom printed. Montazerian says human bones are incredibly resilient, but when things go wrong, replacing them can be a painful process, requiring multiple surgeries.

“When designing artificial bone scaffolds it’s a fine balance between something that is porous enough to mix with natural bone and connective tissue, but at the same time strong enough for patients to lead a normal life,” says Montazerian. “We’ve identified a design that strikes that balance and can be custom built using a 3D printer.”

Traditional bone grafting is used in medicine to treat anything from traumatic fractures to defects, and requires moving bone from one part of the body to another. But Montazerian says his artificial bone grafts could be custom printed to potentially fit any patient and wouldn’t require transplanting existing bone fragments.

In his research, Montazerian analyzed 240 different bone graft designs and focused on just the ones that were both porous and strong. He printed those that performed the best using a 3D printer and then ran physical tests to determine how effective they would be under load in the real world.

“A few of the structures really stood out,” Montazerian adds. “The best designs were up to 10 times stronger than the others and since they have properties that are much more similar to natural bone, they’re less likely to cause problems over the long term.”

Montazerian and his collaborators are already working on the next generation of designs that will use a mix of two or more structures.

“We hope to produce bone grafts that will be ultra-porous, where the bone and connective tissues meet and are extra-strong at the points under the most stress. The ultimate goal is to produce a replacement that almost perfectly mimics real bone.”

While his bone graft designs are well on their way, Montazerian says the technology still needs some advances before it can be used clinically. For example, he says other researchers in the field are starting to refine biomaterials that won’t be rejected by the body and that can be printed with the very fine 3D details that his designs require.

“This solution has enormous potential and the next step will be to test how our designs behave in real biological systems,” he says. “I hope to see this kind of technology clinically implemented for real patients in the near future.”

Montazerian’s research was recently published in Science Direct’s Materials & Design.

Related Articles Read More >

The Weiss-Aug MedPharma logo.
Weiss-Aug reorganizes to launch Weiss-Aug MedPharma
A photo of nitinol, a nickel-titanium alloy used for medical devices such as stents, heart valves, catheters and orthopedics.
What is nitinol and where is it used?
A photo of Highridge Medical CEO Rebecca Whitney.
Highridge Medical is betting on this spine tech
These are the logos of Demetra Holdings and GetSet Surgical.
Demetra Holding acquires majority stake in Swiss-based GetSet Surgical
“mdo
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest medical device business news, application and technology trends.

DeviceTalks Weekly

See More >

MDO Digital Edition

Digital Edition

Subscribe to Medical Design & Outsourcing. Bookmark, share and interact with the leading medical design engineering magazine today.

MEDTECH 100 INDEX

Medtech 100 logo
Market Summary > Current Price
The MedTech 100 is a financial index calculated using the BIG100 companies covered in Medical Design and Outsourcing.
DeviceTalks

DeviceTalks is a conversation among medical technology leaders. It's events, podcasts, webinars and one-on-one exchanges of ideas & insights.

DeviceTalks

New MedTech Resource

Medical Tubing

MassDevice

Mass Device

The Medical Device Business Journal. MassDevice is the leading medical device news business journal telling the stories of the devices that save lives.

Visit Website
MDO ad
Medical Design and Outsourcing
  • MassDevice
  • DeviceTalks
  • MedTech100 Index
  • Medical Tubing + Extrusion
  • Medical Design Sourcing
  • Drug Delivery Business News
  • Drug Discovery & Development
  • Pharmaceutical Processing World
  • R&D World
  • About Us/Contact
  • Advertise With Us
  • Subscribe to Print Magazine
  • Subscribe to our E-Newsletter
  • Listen to our Weekly Podcasts
  • Join our DeviceTalks Tuesdays Discussion

Copyright © 2025 WTWH Media, LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media LLC. Site Map | Privacy Policy | RSS

Search Medical Design & Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Supplies and Components Index
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • MedTech Resources
    • Medtech Events in 2025
    • The 2024 Medtech Big 100
    • Medical Device Handbook
    • MedTech 100 Index
    • Subscribe to Print Magazine
    • DeviceTalks
    • Digital Editions
    • eBooks
    • Educational Assets
    • Manufacturer Search
    • Podcasts
    • Print Subscription
    • Webinars / Digital Events
    • Whitepapers
    • Voices
    • Views
    • Video
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Women in Medtech
  • Advertise
  • Subscribe