Medical Design and Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Supplies and Components Index
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • MedTech Resources
    • Medtech Events in 2025
    • The 2024 Medtech Big 100
    • Medical Device Handbook
    • MedTech 100 Index
    • Subscribe to Print Magazine
    • DeviceTalks
    • Digital Editions
    • eBooks
    • Manufacturer Search
    • Podcasts
    • Print Subscription
    • Webinars / Digital Events
    • Whitepapers
    • Voices
    • Video
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Women in Medtech
  • Advertise
  • Subscribe

Ultrathin, Skin-Conforming Sensor Continuously Monitors Circulation

January 29, 2016 By National Institute of Biomedical Imaging and Bioengineering

Frequent measurement of blood flow changes could improve the ability of health care providers to diagnose and treat patients with vascular conditions, such as those associated with diabetes and high blood pressure. A U.S.-Chinese team that included researchers from the National Institute of Biomedical Imaging and Bioengineering (NIBIB) and the National Heart, Lung, and Blood Institute, both parts of the National Institutes of Health, conducted a pilot study showing that an ultrathin, skin-conforming sensor—resembling a peel-away tattoo—provides non-invasive, precise, and continuous monitoring of circulation, including blood flow within the smallest vessels.

In a study published in the Oct. 30, 2015 issue of Science Advances, the researchers showed that the sensor can measure blood flow in both large and micro-sized blood vessels near the skin’s surface. They also provided details about the design and operation of the device. The researchers assessed the sensor’s performance under various conditions, showing that the technology could be used for continuous blood-flow monitoring during daily activities and in a variety of clinical research and health care settings.

A epidermal sensor detects blood flow changes for continuous monitoring of vascular disease. (Credit: R.C. Webb, et al., Science Advances.)

In addition to diabetes and chronic hypertension, conditions that affect the health of blood vessels and surrounding tissue include kidney disease, autoimmune and other inflammatory conditions, the effects of aging and smoking, and a class of cholesterol-related abnormalities called dyslipidemias. Continuous monitoring of variations in blood flow could also be valuable in assessing these conditions in clinical and research scenarios.

The pilot-tested device, co-developed with researchers at Northwestern University, is among a variety of tools available to measure blood flow. Other devices, such as ones based on optical or acoustic methods, however, do not work as well when the body is in motion, and thus require a patient or study subject to remain still.

The researchers overcame these challenges with the soft, skin-conforming electronic device that is applied directly onto the skin and uses thermal sensors to collect data on changes in temperature, including those caused by changes in blood flow. The device can also apply a small amount of heat in order to test a subject’s responses. In this mode, a miniature pad in the device generates a heat impulse, while 14 surrounding thermal sensors detect the resulting heat flux. The signal is sent to a computer that calculates the velocity of blood flow occurring within two millimeters of the skin surface.

In their study, the researchers placed the sensor on a study subject’s forearm, over a large, visible vein, and then applied pressure for 60 seconds at various positions near the vein. Each time, the device sensed corresponding reductions in blood flow. The researchers also used a thermal camera that measures infrared signals to confirm that the blood-flow sensor measurements were accurate, even when the subject moved around.

The illustration depicts the components of the flexible, peel-away blood flow sensor, including a central thermal actuator, and 14 mapping sensors. (Credit: R.C. Webb, et al., Science Advances.)

Next, they chose a placement on the forearm that was not near a large vein, so that the device would detect blood flow in micro-sized blood vessels within the underlying tissue. The researchers were able to detect changes in blood flow when the study subject took a deep breath. Members of the team at a collaborating institution performed a separate test that involved delivering a gentle slap to the skin near the electronic sensor, which caused a mild reddening reaction. The sensor registered the skin reaction as an increase of surface temperature, accompanied by a change in the direction of blood flow within two millimeters of the skin’s surface.

According to co-author Alexander Gorbach, Ph.D., head of NIBIB’s Infrared Imaging and Thermometry Unit, the tests performed with the thermal sensor helped to establish a number of guidelines for its use, such as optimal placement of the sensor, and how deeply under the skin’s surface the device can assess blood flow. At this stage, the device shows promise as a low-cost, readily-fabricated sensor for use in ambulatory or hospital-based settings. Because of the link between chronic hypertension and some types of vascular diseases, the new sensor may be a useful addition to studies of hypertension and its consequences.

Dr. Gorbach had taken part in prior research, published in 2013, that tested the electronic sensor’s use for collecting continuous body temperature readings. In that study, the team tested the device for use in monitoring the skin temperature of patients under observation for infection or other illnesses. “The clinical standard for temperature readings is two times per day, but this device can send readings two times per second,” he said. In addition, the device can also be used during surgery to monitor the temperature and blood flow of internal organs.

Related Articles Read More >

Wyss Institute researchers develop coating to extend lifespan of implantable biosensors
A photo of Medtronic's LINQ II implantable cardiac monitor.
Lessons from Medtronic’s Define AFib study of implantable cardiac monitors
FDA logo
FDA releases draft guidance for pulse oximeter accuracy
This is a UCSD image of a small, stretchy skin patch that uses ultrasound to provide continuous blood pressure monitoring deep inside the body.
UCSD researchers clinically validate blood pressure monitoring patch
“mdo
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest medical device business news, application and technology trends.

DeviceTalks Weekly

See More >

MDO Digital Edition

Digital Edition

Subscribe to Medical Design & Outsourcing. Bookmark, share and interact with the leading medical design engineering magazine today.

MEDTECH 100 INDEX

Medtech 100 logo
Market Summary > Current Price
The MedTech 100 is a financial index calculated using the BIG100 companies covered in Medical Design and Outsourcing.
DeviceTalks

DeviceTalks is a conversation among medical technology leaders. It's events, podcasts, webinars and one-on-one exchanges of ideas & insights.

DeviceTalks

New MedTech Resource

Medical Tubing

MassDevice

Mass Device

The Medical Device Business Journal. MassDevice is the leading medical device news business journal telling the stories of the devices that save lives.

Visit Website
MDO ad
Medical Design and Outsourcing
  • MassDevice
  • DeviceTalks
  • MedTech100 Index
  • Medical Tubing + Extrusion
  • Medical Design Sourcing
  • Drug Delivery Business News
  • Drug Discovery & Development
  • Pharmaceutical Processing World
  • R&D World
  • About Us/Contact
  • Advertise With Us
  • Subscribe to Print Magazine
  • Subscribe to our E-Newsletter
  • Listen to our Weekly Podcasts
  • Join our DeviceTalks Tuesdays Discussion

Copyright © 2025 WTWH Media, LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media LLC. Site Map | Privacy Policy | RSS

Search Medical Design & Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Supplies and Components Index
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • MedTech Resources
    • Medtech Events in 2025
    • The 2024 Medtech Big 100
    • Medical Device Handbook
    • MedTech 100 Index
    • Subscribe to Print Magazine
    • DeviceTalks
    • Digital Editions
    • eBooks
    • Manufacturer Search
    • Podcasts
    • Print Subscription
    • Webinars / Digital Events
    • Whitepapers
    • Voices
    • Video
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Women in Medtech
  • Advertise
  • Subscribe