Medical Design and Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • Med Tech Resources
    • Subscribe to Print Magazine
    • DeviceTalks Tuesdays
    • Digital Editions
    • eBooks
    • Manufacturer Search
    • Medical Device Handbook
    • MedTech 100 Index
    • Podcasts
    • Print Subscription
    • The Big 100
    • Webinars / Digital Events
    • Whitepapers
    • Video
  • 2022 Leadership in MedTech
    • 2022 Leadership Voting!
    • 2021 Winners
    • 2020 Winners
  • Women in Medtech

Unbreak My Heart

July 23, 2014 By Max-Planck-Gesellschaft

Max Planck scientists image a beating heart in 3D

This is a reconstructed beating heart of a zebrafish embryo. The muscle layer (myocardium) is represented in red and the endothelium (endocardium and vasculature) is represented in cyan. (Credit: MPI f. Molecular Cell Biology and Genetics/ Huisken)Researchers of the Max Planck Institute of Molecular Cell Biology and Genetics in Dresden report how they managed to capture detailed three-dimensional images of cardiac dynamics in zebrafish. The novel approach: They combine high-speed Selective Plane Illumination Microscopy (SPIM) and clever image processing to reconstruct multi-view movie stacks of the beating heart. Furthermore, they have developed a method of generating high-resolution static reconstructions of the zebrafish’s heart: the Dresden research team used optogenetics to stop the beating heart by illuminating it with light.

Non-periodic phenomena such as irregularly beating hearts and the flow of blood cells are resolved by high-speed volume scanning using a liquid lens. This work is set to be key in our understanding of congenital heart defects as well in future experiments on cardiac function and development. Until recently, available microscopes were too slow to capture a beating heart in 3D. Now, the team led by research group leader Jan Huisken at the Max Planck Institute of Molecular Cell Biology and Genetics has developed a high-speed, selective plane illumination microscope that manages to do just that. By gently illuminating the fish heart with a thin light sheet and observing the emitted fluorescence with a fast and sensitive camera the researchers have achieved fast, non-invasive imaging of labelled heart tissue. The process involves taking multiple movies, each covering individual planes of the heart (movie stacks), then using the correlations between the individual planes to generate a synchronised, dynamic 3D image of the beating heart.

The team also obtained static high-resolution reconstructions by briefly stopping the heart with optogenetics. This procedure does not harm the fish – zebrafish embryos can survive a cardiac arrest of several hours. “These renderings allow us to further follow characteristic structures of the heart throughout the cardiac cycle,” says Michaela Mickoleit, PhD student who performed the experiments in Huisken’s lab. For instance, they now can clearly observe cardiac contractions or the distance between endo- and myocardium throughout the heartbeat.

By manipulating the exposure time and magnification of the images, better resolution could be achieved and fine details such as sarcomeres and filamentous actin could also be resolved. Finally, they then also went on to resolve non-periodic phenomena by high-speed volume scanning with a liquid lens. For the first time, it has become possible to also image diseased hearts that exhibit arrhythmia – exciting news for cardiologists.

The team at the Max Planck Institute of Molecular Cell Biology and Genetics has developed a fantastic array of tools to image the heart in vivo, ranging from static to ultra-high-speed images. Their work offers potentially revolutionary insights into the cellular structure of the beating heart and are set to further improve our knowledge of congenital heart defects.

Related Articles Read More >

UMN artificial blood vessel clinical trial
Minnesota researchers awarded $3.7M grant for artificial, bioengineered blood vessel clinical trial
CeQur Simplicity
CeQur is launching a discreet, convenient ‘wearable insulin pen’
Blackrock's Utah array is a miniature array of electrodes for sensing brain signals
Blackrock Neurotech and Pitt work on first at-home BCI system for remote trials
Engineer inspecting artificial hip joint parts in quality control department in orthopaedic factory
Deburring and finishing for beautiful, functional medical devices

DeviceTalks Weekly.

August 5, 2022
DTW Medtronic's Greg Smith lays out supply chain strategies
See More >

MDO Digital Edition

Digital Edition

Subscribe to Medical Design & Outsourcing. Bookmark, share and interact with the leading medical design engineering magazine today.

MEDTECH 100 INDEX

Medtech 100 logo
Market Summary > Current Price
The MedTech 100 is a financial index calculated using the BIG100 companies covered in Medical Design and Outsourcing.
DeviceTalks

DeviceTalks is a conversation among medical technology leaders. It's events, podcasts, webinars and one-on-one exchanges of ideas & insights.

DeviceTalks

New MedTech Resource

Medical Tubing

Enewsletter Subscriptions

Enewsletter Subscriptions

MassDevice

Mass Device

The Medical Device Business Journal. MassDevice is the leading medical device news business journal telling the stories of the devices that save lives.

Visit Website
MDO ad
Medical Design and Outsourcing
  • MassDevice
  • DeviceTalks
  • MedTech100 Index
  • Medical Tubing + Extrusion
  • Medical Design Sourcing
  • Drug Delivery Business News
  • Drug Discovery & Development
  • Pharmaceutical Processing World
  • R&D World
  • About Us/Contact
  • Advertise With Us
  • Subscribe to Print Magazine
  • Subscribe to E-newsletter
  • Attend our Monthly Webinars
  • Listen to our Weekly Podcasts
  • Join our DeviceTalks Tuesdays Discussion

Copyright © 2022 WTWH Media, LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media LLC. Site Map | Privacy Policy | RSS

Search Medical Design & Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • Med Tech Resources
    • Subscribe to Print Magazine
    • DeviceTalks Tuesdays
    • Digital Editions
    • eBooks
    • Manufacturer Search
    • Medical Device Handbook
    • MedTech 100 Index
    • Podcasts
    • Print Subscription
    • The Big 100
    • Webinars / Digital Events
    • Whitepapers
    • Video
  • 2022 Leadership in MedTech
    • 2022 Leadership Voting!
    • 2021 Winners
    • 2020 Winners
  • Women in Medtech