Medical Design and Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • Med Tech Resources
    • DeviceTalks Tuesdays
    • Digital Editions
    • eBooks
    • Manufacturer Search
    • Medical Device Handbook
    • MedTech 100 Index
    • Podcasts
    • Print Subscription
    • The Big 100
    • Webinars / Digital Events
    • Whitepapers
    • Video
  • 2022 Leadership in MedTech
    • 2022 Leadership Voting!
    • 2021 Winners
    • 2020 Winners
  • Women in Medtech

Unwanted Side Effect Becomes Advantage in Photoacoustic Imaging

January 16, 2014 By Beth Miller, Washington University in St. Louis

The images above show melanoma cells (top) and rose petal epidermal cells (bottom) using conventional photoacoustic microscopy (PAM) (left) and photo imprint photoacoustic microscopy. The resolution is considerably sharper in the photo imprint PAM image. Biomedical engineer Lihong Wang, PhD, and researchers in his lab work with lasers used in photoacoustic imaging for early-cancer detection and a close look at biological tissue. But sometimes there are limitations to what they can do, and as engineers, they work to find a way around those limitations.

Wang, the Gene K. Beare Distinguished Professor of Biomedical Engineering in the School of Engineering & Applied Science at Washington University in St. Louis, and Junjie Yao, PhD, a postdoctoral research associate in Wang’s lab, found a unique and novel way to use an otherwise unwanted side effect of the lasers they use—the photo bleaching effect—to their advantage.

The results were published online Jan. 10 in Physical Review Letters.

The researchers use an optical microscopy method called photoacoustic microscopy to take an intensely close look at tissues. The laser beam is a mere 200 nanometers wide. However, the center of the laser beam is so strong that it bleaches the center of the tissue sample. When researchers pulse the laser beam on the tissue, the molecules no longer give signals packed with information.

A second laser pulse probes the molecules that are left in the boundary of the sample. In this pulse, the molecules in the center of the sample provide a weaker signal because they are already bleached.

“Previously when a molecule was prone to bleaching, researchers didn’t want to use it because they couldn’t get enough information from it,” Yao says. “Now for us, that is good news.”

Wang and Yao subtracted the boundary area of the sample, leaving only the center—or what they call a photo imprint—now down to 80 nanometers wide, providing a very high, or super-resolution, picture. A smaller diameter of the center provides a better resolution in the image.

“In the end, we effectively shrink the detection spot to a smaller region,” Yao says. “Eighty nanometers allows us to see a lot of subcellular features, such as mitochondria or cell nuclei.”

After each area of the sample is scanned, the researchers create an image. With previous photoacoustic microscopy imaging, the microspheres on the image were blurry. However, with the new photo-imprint photoacoustic microscopy, the resulting image is clear and sharp.

“When we improve the resolution, we can see the cell structure with much more detail,” Yao says. “For biologists, these are much more informative images.”

Those working in imaging could apply this method to their own research, Yao says.

Related Articles Read More >

Engineer inspecting artificial hip joint parts in quality control department in orthopaedic factory
Deburring and finishing for beautiful, functional medical devices
A Medtronic HVAD pump opened up to show the inner workings
FDA designates new Medtronic HVAD pump implant recall as Class I
Dexcom One
How Dexcom’s portfolio goes beyond highly-anticipated next-gen G7
A portrait of Stryker executive Siddarth Satish
How Stryker includes users for product design in the digital age

DeviceTalks Weekly.

June 24, 2022
How innovative design, commercial strategy is building Cala Trio’s bioelectronic medicine market
See More >

MDO Digital Edition

Digital Edition

Subscribe to Medical Design & Outsourcing. Bookmark, share and interact with the leading medical design engineering magazine today.

MEDTECH 100 INDEX

Medtech 100 logo
Market Summary > Current Price
The MedTech 100 is a financial index calculated using the BIG100 companies covered in Medical Design and Outsourcing.
DeviceTalks

DeviceTalks is a conversation among medical technology leaders. It's events, podcasts, webinars and one-on-one exchanges of ideas & insights.

DeviceTalks

New MedTech Resource

Medical Tubing

Enewsletter Subscriptions

Enewsletter Subscriptions

MassDevice

Mass Device

The Medical Device Business Journal. MassDevice is the leading medical device news business journal telling the stories of the devices that save lives.

Visit Website
MDO ad
Medical Design and Outsourcing
  • MassDevice
  • DeviceTalks
  • MedTech 100 Index
  • Medical Tubing + Extrusion
  • Drug Delivery Business News
  • Drug Discovery & Development
  • Pharmaceutical Processing World
  • R&D World
  • About Us/Contact
  • Advertise With Us
  • Subscribe to Print Magazine
  • Subscribe to E-newsletter
  • Attend our Monthly Webinars
  • Listen to our Weekly Podcasts
  • Join our DeviceTalks Tuesdays Discussion

Copyright © 2022 WTWH Media, LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media LLC. Site Map | Privacy Policy | RSS

Search Medical Design & Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • Med Tech Resources
    • DeviceTalks Tuesdays
    • Digital Editions
    • eBooks
    • Manufacturer Search
    • Medical Device Handbook
    • MedTech 100 Index
    • Podcasts
    • Print Subscription
    • The Big 100
    • Webinars / Digital Events
    • Whitepapers
    • Video
  • 2022 Leadership in MedTech
    • 2022 Leadership Voting!
    • 2021 Winners
    • 2020 Winners
  • Women in Medtech