Medical Design and Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • Med Tech Resources
    • DeviceTalks Tuesdays
    • Digital Editions
    • eBooks
    • Manufacturer Search
    • Medical Device Handbook
    • MedTech 100 Index
    • Podcasts
    • Print Subscription
    • The Big 100
    • Webinars / Digital Events
    • Whitepapers
    • Video
  • 2022 Leadership in MedTech
    • 2022 Leadership Voting!
    • 2021 Winners
    • 2020 Winners
  • Women in Medtech

Viral Infections No Match for New Mechanism

June 15, 2015 By Johannes Gutenberg Universitaet Mainz

An innovative mechanism that the innate immune system uses to control viral infections has been uncovered by researchers at the University Medical Centers in Mainz and Freiburg. Central to this is the discovery that two different but related elements of the immune system can act together in concert to fight, for example, rotavirus infections. Infection with rotavirus is the most common cause of diarrhea in children around the world. The results of the research have recently been published in the eminent scientific journal Nature Immunology.

The innate immune system is able to combat infective pathogens such as viruses, bacteria, and parasites on several levels. Among other things, so-called ‘interferons’ play an important role in antiviral defense. These are special proteins which are quickly released in response to a viral infection and which can trigger a relevant immune response against the cells under attack. At the same time, so-called ‘innate lymphoid cells’ (ILCs) are a significant factor in the functioning of the innate immune system. ILCs are mainly active in inner and outer body surfaces where they produce special proteins, in this case interleukins, and thus participate in an early stage of the immune response to infection by viruses, bacteria, and parasites.

The researchers were able to use the example of the rotavirus to demonstrate how such an infection could be very effectively battled. The mechanism involves the interaction of special interferons (interferon-lambda, IFN-λ) with special interleukins (IL-22), the latter of which are expressed by a subgroup of ILCs called ILC3 cells. Rotaviruses are highly contagious pathogens which cause vomiting and diarrhea. Rotavirus infection is the most frequent cause of diarrhea in children and is responsible for more than 500,000 deaths around the world each year. It attacks the epithelial cells that coat the intestine and damages them.

“We were able to show that interferon-lambda (IFN-λ), although a required factor, is not capable by itself to control rotavirus infection but that the presence of interleukin-22 (IL-22) is also necessary to effectively combat rotavirus,” explained Professor Andreas Diefenbach of the Department of Medical Microbiology and Hygiene of the Mainz University Medical Center. The researchers were able to identify the mechanism underlying this synergistic effect. They discovered that both messenger substances act jointly to optimally fight rotavirus by triggering the formation of antiviral proteins particularly in the epithelial cells of the intestine; these effectively prevent the synthesis of new virus particles.

It is already known that the messenger substance interleukin-22 has a variety of functions in immune response reactions, such as, for example, defending the intestines and lungs against bacterial infections. In addition, interleukin-22 makes an important contribution to tissue repair processes in the intestines following damage to the intestinal epithelium following exposure to radiation. “Our new discovery that interleukin-22 acts as a sort of reinforcement for interferon is so exciting because it could have implications for the design of future immunotherapy concepts”, said Diefenbach. Interferons are used, for example, in the immunotherapy of often refractory chronic viral infections such as hepatitis.

The researchers postulate that the innovative mechanism in which two components of the innate immune system collaborate effectively in the epithelial cells may have developed in the course of evolution as a secondary line of immune defense in an environment in which viruses have continually changed and adapted. Because rotavirus is a particular threat to children, the researchers also hope to acquire insight into the functioning of the immune system at the beginning of life before the acquired immune system has had time to fully develop.

Related Articles Read More >

Logos of Creo Medical and Intuitive
Creo Medical inks collaboration agreement with Intuitive
Lazurite ArthroFree wireless surgical camera system Minnetronix Medical
How Minnetronix Medical helped Lazurite with its wireless surgical camera
Medtronic Hugo robot-assisted surgery system
The road to a robot: Medtronic’s development process for its Hugo RAS system
A portrait of Stryker executive Siddarth Satish
How Stryker includes users for product design in the digital age

DeviceTalks Weekly.

May 20, 2022
DeviceTalks Boston Post-Game – Editors’ Top Moments, Insulet’s Eric Benjamin on future of Omnipod 5
See More >

MDO Digital Edition

Digital Edition

Subscribe to Medical Design & Outsourcing. Bookmark, share and interact with the leading medical design engineering magazine today.

MEDTECH 100 INDEX

Medtech 100 logo
Market Summary > Current Price
The MedTech 100 is a financial index calculated using the BIG100 companies covered in Medical Design and Outsourcing.
DeviceTalks

DeviceTalks is a conversation among medical technology leaders. It's events, podcasts, webinars and one-on-one exchanges of ideas & insights.

DeviceTalks

New MedTech Resource

Medical Tubing

Enewsletter Subscriptions

Enewsletter Subscriptions

MassDevice

Mass Device

The Medical Device Business Journal. MassDevice is the leading medical device news business journal telling the stories of the devices that save lives.

Visit Website
MDO ad
Medical Design and Outsourcing
  • MassDevice
  • DeviceTalks
  • MedTech 100 Index
  • Medical Tubing + Extrusion
  • Drug Delivery Business News
  • Drug Discovery & Development
  • Pharmaceutical Processing World
  • R&D World
  • About Us/Contact
  • Advertise With Us
  • Subscribe to Print Magazine
  • Subscribe to E-newsletter
  • Attend our Monthly Webinars
  • Listen to our Weekly Podcasts
  • Join our DeviceTalks Tuesdays Discussion

Copyright © 2022 WTWH Media, LLC. All Rights Reserved. Site Map | Privacy Policy | RSS

Search Medical Design & Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • Med Tech Resources
    • DeviceTalks Tuesdays
    • Digital Editions
    • eBooks
    • Manufacturer Search
    • Medical Device Handbook
    • MedTech 100 Index
    • Podcasts
    • Print Subscription
    • The Big 100
    • Webinars / Digital Events
    • Whitepapers
    • Video
  • 2022 Leadership in MedTech
    • 2022 Leadership Voting!
    • 2021 Winners
    • 2020 Winners
  • Women in Medtech