Medical Design and Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Supplies and Components Index
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • MedTech Resources
    • Medtech Events in 2025
    • The 2024 Medtech Big 100
    • Medical Device Handbook
    • MedTech 100 Index
    • Subscribe to Print Magazine
    • DeviceTalks
    • Digital Editions
    • eBooks
    • Manufacturer Search
    • Podcasts
    • Print Subscription
    • Webinars / Digital Events
    • Whitepapers
    • Voices
    • Video
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Women in Medtech
  • Advertise
  • Subscribe

Your Finger’s Pulse Holds the Key to Your Heart’s Health

September 5, 2013 By Jennifer Patterson, University of Iowa

New technique from UI study use finger’s pulse to measure stiffness in the aorta

Gary PierceA University of Iowa physiologist has a new technique to measure the stiffness of the aorta, a common risk factor for heart disease. And it can be as simple as measuring the pulse in your finger.

The new procedure developed by Gary Pierce, assistant professor in the Department of Health and Human Physiology, works by placing an instrument called a transducer on the finger or over the brachial artery, located inside the arm just beneath the elbow. The readout, combined with a person’s age and body mass index, lets physicians know whether the aorta has stiffened.

Currently, physicians see whether a patient has a hardened aorta by recording a pulse from the carotid artery, located in the neck, and the femoral artery, which is located in the groin. Taking a pulse from the finger or on the arm is easier to record and nearly as accurate, Pierce says. It also works better with obese patients, whose femoral pulse can be difficult to obtain reliably, he adds.

“The technique is more effective in that it is easy to obtain just one pulse waveform in the finger or the brachial artery, and it’s less intrusive than obtaining a femoral waveform in patients,” says Pierce, first author on the paper, published in the American Journal of Physiology – Heart and Circulatory Physiology. “It also can be easily obtained in the clinic during routine exams similar to blood pressure tests.”

Heart disease is the leading cause of death for both men and women in the United States, killing about 600,000 people every year, according to the federal Centers for Disease Control and Prevention.

One key to a healthy heart is a healthy aorta. A person’s heart has to work harder when the aorta, the large artery that leaves the heart and delivers blood to the body’s tissues, stiffens due to aging and an inactive lifestyle. The harder a person’s heart needs to work, the higher risk he or she has for developing high blood pressure, stroke and a heart attack.

Since people can live for years without any knowledge of existing cardiovascular problems, this new measurement tool is especially important. It can provide useful diagnostic information for middle-aged and older patients, who are most susceptible to having hardened arteries that can lead to heart disease.

Regular assessments of the aorta may help reduce those risks. Pierce’s instrument measures notes the speed, called aortic pulse wave velocity, at which the pulse moves between two points. The UI team validated the new instrument’s performance against the carotid-femoral-artery pulse wave velocity tests, considered the gold standard for determining aortic stiffness.

“Finding simple noninvasive methods to measure aortic pulse wave velocity in the clinic may help physicians to better inform middle-aged and older adults about their level of cardiovascular risk,” Pierce says, noting that past studies have shown that regular exercise protects the aorta from hardening in those age groups.

The paper’s corresponding author is Harald Stauss, associate professor in health and human physiology. Other authors from the UI include Darren Casey, Jess Fiedorowicz, and DeMaris Wilson. Douglas Seals from the University of Colorado-Boulder and Timothy Curry and Jill Barnes from the Mayo Clinic in Rochester, Minn. also contributed to the paper.

Related Articles Read More >

A photo of nitinol, a nickel-titanium alloy used for medical devices such as stents, heart valves, catheters and orthopedics.
What is nitinol and where is it used?
An image of Abbott's Infinity deep brain stimulation (DBS) implants and leads.
How Abbott developed the first-of-its-kind Infinity DBS system
Axoft Fleuron brain-computer interface BCI probe
Axoft makes Fleuron BCI material available for purchase, inks license deal with Stanford
An illustration showing the Edwards Lifesciences Sapien M3 transcatheter mitral valve replacement (TMVR) system's valve being placed in the heart. [Image courtesy of Edwards Lifesciences]
The top nitinol cardiac medtech news of 2025 (so far)
“mdo
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest medical device business news, application and technology trends.

DeviceTalks Weekly

See More >

MDO Digital Edition

Digital Edition

Subscribe to Medical Design & Outsourcing. Bookmark, share and interact with the leading medical design engineering magazine today.

MEDTECH 100 INDEX

Medtech 100 logo
Market Summary > Current Price
The MedTech 100 is a financial index calculated using the BIG100 companies covered in Medical Design and Outsourcing.
DeviceTalks

DeviceTalks is a conversation among medical technology leaders. It's events, podcasts, webinars and one-on-one exchanges of ideas & insights.

DeviceTalks

New MedTech Resource

Medical Tubing

MassDevice

Mass Device

The Medical Device Business Journal. MassDevice is the leading medical device news business journal telling the stories of the devices that save lives.

Visit Website
MDO ad
Medical Design and Outsourcing
  • MassDevice
  • DeviceTalks
  • MedTech100 Index
  • Medical Tubing + Extrusion
  • Medical Design Sourcing
  • Drug Delivery Business News
  • Drug Discovery & Development
  • Pharmaceutical Processing World
  • R&D World
  • About Us/Contact
  • Advertise With Us
  • Subscribe to Print Magazine
  • Subscribe to our E-Newsletter
  • Listen to our Weekly Podcasts
  • Join our DeviceTalks Tuesdays Discussion

Copyright © 2025 WTWH Media, LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media LLC. Site Map | Privacy Policy | RSS

Search Medical Design & Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Supplies and Components Index
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • MedTech Resources
    • Medtech Events in 2025
    • The 2024 Medtech Big 100
    • Medical Device Handbook
    • MedTech 100 Index
    • Subscribe to Print Magazine
    • DeviceTalks
    • Digital Editions
    • eBooks
    • Manufacturer Search
    • Podcasts
    • Print Subscription
    • Webinars / Digital Events
    • Whitepapers
    • Voices
    • Video
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Women in Medtech
  • Advertise
  • Subscribe