Medical Design and Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Supplies and Components Index
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • MedTech Resources
    • Medtech Events in 2025
    • The 2024 Medtech Big 100
    • Medical Device Handbook
    • MedTech 100 Index
    • Subscribe to Print Magazine
    • DeviceTalks
    • Digital Editions
    • eBooks
    • Educational Assets
    • Manufacturer Search
    • Podcasts
    • Print Subscription
    • Webinars / Digital Events
    • Whitepapers
    • Voices
    • Views
    • Video
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Women in Medtech
  • Advertise
  • Subscribe

Zebrafish Help to Unravel Alzheimer’s Disease

August 19, 2014 By VIB - Flanders Interuniversity Institute for Biotechnology

New fundamental knowledge about the regulation of stem cells in the nerve tissue of zebrafish embryos results in surprising insights into neurodegenerative disease processes in the human brain. A new study by scientists at VIB and KU Leuven identifies the molecules responsible for this process.

Zebrafish as a Model
The zebrafish is a small fish measuring 3 to 5 cm in length, with dark stripes along the length of its body. They are originally from India, but also a popular aquarium fish. Zebrafish have several unusual characteristics that make them popular for scientific research. Zebrafish eggs are fertilized outside the body, where they develop into embryos. This process occurs very quickly: the most important organs have formed after 24 hours and the young fish have hatched after 3 days. These fish are initially transparent, making them easy to study under the microscope. Zebrafish start reproducing after only 3 months. The genetic code of humans and zebrafish is more than 90 % identical. In addition, the genetic material of these fish is easy to manipulate, meaning that they are often used as a model in the study of all sorts of diseases.

Stem Cells in the Brain
Evgenia Salta, scientist in the team of Bart De Strooper (VIB – KU Leuven), used zebrafish as a model in molecular brain research and discovered a previously unknown regulatory process for the development of nerve cells. Evgenia Salta explains: “The human brain contains stem cells, which are cells that have not matured into nerve cells yet, but do have the potential to do this.” Stem cells are of course crucial in the development of the brain. Similar stem cells also exist in zebrafish. Therefore, these fish form an ideal model to study the behavior of these cells. A so-called Notch signaling pathway regulates the further ripening of these cells during early embryonic development. Scientists are still largely in the dark about Notch processes in the brains of Alzheimer patients, but the research by Evgenia Salta is changing this situation.

MicroRNA
The expression of genes, which form the basis of the Notch signaling pathway, is regulated in part by microRNAs (miRNAs), which are short molecules that can inhibit or activate genes. Evgenia Salta: “We specifically studied how miRNA-132 regulates the Notch signaling pathway in stem cells.”

MiRNA-132 appears to play a role in maintaining the plasticity of the adult human brain. The adult brain still contains stem cells, but these are limited in number. The activity of miRNA-132 is reduced in diseases of the nervous system that involve the death of nerve cells, such as Alzheimer’s dementia. “We wanted to study the effect of the reduction in miRNA-132 in the nervous system. Zebrafish are an ideal model for this, because we can easily reduce levels of this miRNA in them. The development of stem cells is impaired in these altered fish. We mapped the molecules that play a role in this process”, explains Evgenia Salta.

Relevance
The concentration of miRNA-132 is also reduced in the brains of patients with Alzheimer’s disease. Therefore, the zebrafish allow you to mimic a condition that also occurs in Alzheimer’s dementia. Evgenia Salta: “To our surprise, the reduced activity of miRNA-132 in the zebrafish blocks the further ripening of stem cells into nerve cells. This new knowledge about the molecular signaling pathway that underlies this process gives us an insight into the exact blocking mechanism. Thanks to this work in zebrafish, we can now examine in detail what exactly goes wrong in the brains of patients with Alzheimer’s disease.” The research team has therefore started a follow-up study in mice and the brains of deceased patients.

Related Articles Read More >

Carnegie Mellon University EEG-based BCI to control robotic hand
Non-invasive BCI enables robotic hand dexterity
How this device broke through the blood-brain barrier
A photo of the miniature Auxilium Biotechnologies implants made on the International Space Station.
Implants 3D-printed in space could enable nerve regeneration
An illustration showing the Artedrone Sasha thrombectomy catheter approaching a blood clot.
This microrobot system is designed to float inside a stroke patient for autonomous thrombectomy
“mdo
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest medical device business news, application and technology trends.

DeviceTalks Weekly

See More >

MDO Digital Edition

Digital Edition

Subscribe to Medical Design & Outsourcing. Bookmark, share and interact with the leading medical design engineering magazine today.

MEDTECH 100 INDEX

Medtech 100 logo
Market Summary > Current Price
The MedTech 100 is a financial index calculated using the BIG100 companies covered in Medical Design and Outsourcing.
DeviceTalks

DeviceTalks is a conversation among medical technology leaders. It's events, podcasts, webinars and one-on-one exchanges of ideas & insights.

DeviceTalks

New MedTech Resource

Medical Tubing

MassDevice

Mass Device

The Medical Device Business Journal. MassDevice is the leading medical device news business journal telling the stories of the devices that save lives.

Visit Website
MDO ad
Medical Design and Outsourcing
  • MassDevice
  • DeviceTalks
  • MedTech100 Index
  • Medical Tubing + Extrusion
  • Medical Design Sourcing
  • Drug Delivery Business News
  • Drug Discovery & Development
  • Pharmaceutical Processing World
  • R&D World
  • About Us/Contact
  • Advertise With Us
  • Subscribe to Print Magazine
  • Subscribe to our E-Newsletter
  • Listen to our Weekly Podcasts
  • Join our DeviceTalks Tuesdays Discussion

Copyright © 2025 WTWH Media, LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media LLC. Site Map | Privacy Policy | RSS

Search Medical Design & Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Supplies and Components Index
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • MedTech Resources
    • Medtech Events in 2025
    • The 2024 Medtech Big 100
    • Medical Device Handbook
    • MedTech 100 Index
    • Subscribe to Print Magazine
    • DeviceTalks
    • Digital Editions
    • eBooks
    • Educational Assets
    • Manufacturer Search
    • Podcasts
    • Print Subscription
    • Webinars / Digital Events
    • Whitepapers
    • Voices
    • Views
    • Video
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Women in Medtech
  • Advertise
  • Subscribe