Medical Design and Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • Med Tech Resources
    • DeviceTalks Tuesdays
    • Digital Editions
    • eBooks
    • Manufacturer Search
    • Medical Device Handbook
    • MedTech 100 Index
    • Podcasts
    • Print Subscription
    • The Big 100
    • Webinars / Digital Events
    • Whitepapers
    • Video
  • 2022 Leadership in MedTech
    • 2022 Leadership Voting!
    • 2021 Winners
    • 2020 Winners
  • Women in Medtech

Scientists Implant Polymeric Prosthesis Imitating Bone Structure

October 12, 2018 By NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY MISIS

For the first time ever, a research team from the small innovative enterprise Biomimetix, implementing several NUST MISIS developments, has successfully implanted a biomimetic hybrid prosthesis-imitating bone structure made from ultra-high molecular weight polyethylene and titanium alloy into a patient’s femoral bone. The successful surgery was carried out at the request of the MedVet veterinary clinic.

The operation, which aimed to implant an experimental biomimetic (similar in structure to the tissues of a living organism) prothesis into a dog with osteosarcoma of the femur, was successfully carried out in August 2018. In just a few days, the animal was again able to walk, and, according to forecasts, its mobility will fully be restored within the next few months.

Osteosarcoma (osteogenic sarcoma) is a fast-growing cancer whose cells originate from bone tissue, leading to its gradual destruction and, accordingly, the loss of mobility. Osteosarcoma is the most common type of bone tumor in both humans and animals.

Treatment for the disease includes a course of chemotherapy and surgery to remove the affected tissues. Advanced technologies allow for organ-preserving surgery, and to support the affected bones, doctors usually insert a metal, ceramic or polymer implant into the bone. Despite the fact that prostheses can restore mobility, they are very different in structure from bone tissue, and this can lead to a number of significant difficulties.

“The traditional materials for medical prosthetics have a number of significant disadvantages: for example, titanium implants take on too much of the load intended for the bone, and the latter begins to thin out. In this situation, the bone at the junction with the prosthesis may break. Another option is ceramics, but they are more fragile, which may limit the size of the recovered bone tissue. In addition, the structure of these materials does not allow them to “grow together” with the bone—a constant tight fixation is required,” explained Fedor Senatov, general director of Biomimetix and research assistant at the NUST MISIS Center of Composite Materials.

The Biomimetix team has been engaged in the development of biomimetic implants for several years. Scientists work with ultra-high molecular weight polyethylene—proven biocompatible materials, but they modify the materials in a unique way that gives the implants the necessary structure. This is the world`s first example of creating biomimetic prostheses from a polymeric material like this. In August 2018, at the request of the MedVed veterinary center, the Biomimetix team developed an experimental biomimetic prosthesis for the femur of a dog with osteosarcoma.

Implants with a titanium-reinforcing component, the “spongy” polymer core and the “cortical”polymer shell. Credit: NUST MISIS

“Since the dog was big, it used to move [very much], so 11 cm of bone was required to be removed, and the prosthesis [needed to be] a hybrid. On the titanium tube, made with 3-D printing by Konmet, our partners, we have increased the layer of solid ultrahigh molecular weight polyethylene, and the inner part is made of porous ultrahigh molecular weight polyethylene, identical to the structure of the spongy bone. During the operation, part of the coating was cut to “fit” the implant to the bone. A few days after the surgery, the dog was able to walk. If the fusion of the polymer and bone tissue is successful, it will be possible to remove the fixing plates after some time,” said Senatov.

“We have successfully performed a prosthetic operation. The implant is durable, as it corresponds to the weight of the dog and the bone size. Here, the long-term results are more important so the implant is accustomed and rooted in the bone. We can expect [a lot of] progress, but it takes time. Now we are watching the dog as it undergoes chemotherapy,” said Ilya Vilkovyskiy, head doctor at MedVet.

The Biomimetix team plans to continue working in the field of biomimetic prosthetics for veterinary use.

Related Articles Read More >

Johnson & Johnson Office of Digital Innovation Leader Peter Schulam
Imagining the future of cloud-connected medical devices with Johnson & Johnson leaders
Withings Body Scan
Withings plans launch for Body Scan smart scale platform
BinaxNow COVID-19 Ag Card
Time recognizes Abbott offerings among this year’s 100 best inventions
Koya Medical’s Dayspring device
Koya Medical reports positive early results in Dayspring lymphedema trial

DeviceTalks Weekly.

May 20, 2022
DeviceTalks Boston Post-Game – Editors’ Top Moments, Insulet’s Eric Benjamin on future of Omnipod 5
See More >

MDO Digital Edition

Digital Edition

Subscribe to Medical Design & Outsourcing. Bookmark, share and interact with the leading medical design engineering magazine today.

MEDTECH 100 INDEX

Medtech 100 logo
Market Summary > Current Price
The MedTech 100 is a financial index calculated using the BIG100 companies covered in Medical Design and Outsourcing.
DeviceTalks

DeviceTalks is a conversation among medical technology leaders. It's events, podcasts, webinars and one-on-one exchanges of ideas & insights.

DeviceTalks

New MedTech Resource

Medical Tubing

Enewsletter Subscriptions

Enewsletter Subscriptions

MassDevice

Mass Device

The Medical Device Business Journal. MassDevice is the leading medical device news business journal telling the stories of the devices that save lives.

Visit Website
MDO ad
Medical Design and Outsourcing
  • MassDevice
  • DeviceTalks
  • MedTech 100 Index
  • Medical Tubing + Extrusion
  • Drug Delivery Business News
  • Drug Discovery & Development
  • Pharmaceutical Processing World
  • R&D World
  • About Us/Contact
  • Advertise With Us
  • Subscribe to Print Magazine
  • Subscribe to E-newsletter
  • Attend our Monthly Webinars
  • Listen to our Weekly Podcasts
  • Join our DeviceTalks Tuesdays Discussion

Copyright © 2022 WTWH Media, LLC. All Rights Reserved. Site Map | Privacy Policy | RSS

Search Medical Design & Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • Med Tech Resources
    • DeviceTalks Tuesdays
    • Digital Editions
    • eBooks
    • Manufacturer Search
    • Medical Device Handbook
    • MedTech 100 Index
    • Podcasts
    • Print Subscription
    • The Big 100
    • Webinars / Digital Events
    • Whitepapers
    • Video
  • 2022 Leadership in MedTech
    • 2022 Leadership Voting!
    • 2021 Winners
    • 2020 Winners
  • Women in Medtech