MbientLab, a company building the next generation of sensors and tools for the healthcare industry, has announced the availability of its MIOTherapy (MIO) wearable technology for physical and occupational therapists. MIO is the first wearable technology platform that integrates the effectiveness of traditional physical therapy with smart sensors, therapeutic exercises, games, and 3D visualization technology to personalize and improve outpatient rehabilitation and accelerate recovery.
Research shows that most physical therapy patients do not fully adhere to their plans for care because of factors that include lack of social support, self-doubt and perceived barriers to exercise.1 This results in millions of Americans living with preventable mobility issues and pain that reduce their quality of life. This lack of compliance also increases the cost of healthcare for these patients due to a higher number of urgent care and emergency room visits related to their injuries, and in some cases, inpatient post-acute care stays.
Using a unique combination of technology software and sensors, MIO helps physical and occupational therapists improve the experience and outcomes of therapy for their patients. MIO provides consistently accurate measurements that can be used to monitor and personalize treatment, increase patient compliance, reduce recovery time, and reduce healthcare costs.
“I’ve found the MIO based technology to be an invaluable tool in improving post-operative care for my patients where position is critical. It’s clear to me that MIO will be a great platform for doctors and physical therapists to analyze, adjust and customize patient treatment plans using precise measurements captured in real time,” said Frank Brodie, M.D., clinical faculty, University of California San Francisco. “This technology provides data that enables me to have an accurate understanding of my patients’ ongoing progress and adjust accordingly. I look forward to integrating MIO even more into my practice.”
Patients using MIO attach its sensors to any body part using stickers or flexible straps, so that physical therapists can measure, collect, and record all motion from a specific body area, delivering key insights about a patient’s range of motion and measurable progress through their exercise program. The extremely accurate sensors measure, analyze, and store a patient’s physical therapy data in the cloud for easy access and analysis via the MIO App. MIO also offers real-time 3D visualization, providing an exact picture of what the patient is doing at any moment, and can be used in-office or via a telehealth platform with clinical oversight.
“We are excited to offer physical and occupational therapists a wearable technology platform that improves patient and provider engagement, and ultimately supports better results and a quicker recovery time for patients,” said Laura Kassovic, co-founder and CEO of MbientLab. “Serving as their virtual assistant, MIO will help physical therapists rethink how they provide physical therapy and work to heal their patients so they can get back to doing the things they enjoy.”
MIO has undergone extensive sensor testing with more than a dozen third-party users, including physical therapists, researchers, clinics, and university labs. Since 2013, there have been more than 250 papers published on the use of the MbientLab sensors used in MIO. Physicians at the University of California, San Francisco have demonstrated that the MIO sensors can increase patient compliance by 20 percent to 80 percent in post-operative retinal surgery patients.2Researchers at Duke University also found an average cost-savings of $2,745 per patient undergoing virtual physical therapy with MIO compared to traditional physical therapy.3
1 Picha KJ, Howell DM. A model to increase rehabilitation adherence to home exercise programmes in patients with varying levels of self-efficacy. Musculoskeletal Care, 2018; 16:233-237.
2 Brodie et al., Novel positioning with real-time feedback for improved postoperative positioning: pilot study in control subjects; May 2017
3 Duke Clinical Research Institute, VERITAS research study, 2016