Medical Design and Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Supplies and Components Index
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • MedTech Resources
    • Medtech Events in 2025
    • The 2024 Medtech Big 100
    • Medical Device Handbook
    • MedTech 100 Index
    • Subscribe to Print Magazine
    • DeviceTalks
    • Digital Editions
    • eBooks
    • Manufacturer Search
    • Podcasts
    • Print Subscription
    • Webinars / Digital Events
    • Whitepapers
    • Voices
    • Video
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Women in Medtech
  • Advertise
  • Subscribe

DIY: Scientists Release a How-To for Building a Smartphone Microscope

November 29, 2017 By University of Houston

(Credit: University of Houston)

Add one more thing to the list of tasks your smartphone can perform. University of Houston researchers have released an open-source dataset offering instructions to people interested in building their own smartphone microscope.

The researchers describe the process in a paper published in Biomedical Optics Express, demonstrating that a basic smartphone equipped with an inexpensive inkjet-printed elastomer lens can be converted into a microscope capable of fluorescence microscopy, able to detect waterborne pathogens and perform other diagnostic functions.

Wei-Chuan Shih, associate professor of electrical and computer engineering, said fluorescence microscopy is “a workhorse,” used in biology, medical diagnostics and other fields to reveal information about cells and tissue that can’t otherwise be detected. The technique allows more information to be harvested from fluid, tissue and other samples, but not everyone has access to an optical microscope that can use fluorescence.

It could extend sophisticated imaging techniques to rural areas and developing countries, Shih said. But it also could have more widespread applications, such as allowing backpackers an easy way to test for pathogens in rivers and streams.

“We really hope anyone who wants to build it can,” he said. “All the pieces can be made with a 3-D printer. It’s not something that belongs just to the lab.”

The work was partially funded with a $100,000 grant from the National Science Foundation’s citizen science initiative, which encourages scientists to find ways to expand knowledge of and access to research.

Shih’s lab created an inexpensive lens that can turn a smartphone into a microscope in 2015; he and members of the lab created a company to produce and distribute the inkjet-printed lenses, which attach directly to a smartphone camera lens.

They continue efforts to improve on that process, and in an article published earlier this fall in Applied Optics they reported engineering a platform – constructed with low-cost parts including LEGO bricks and plastic imaging components – to ensure high-throughput quality inspection of the inkjet-printed lenses.

The lenses were used in the work reported in Biomedical Optics Express, which details how the researchers combined simple LED lighting with a 3-D printed cartridge designed to hold a conventional glass slide. The light and cartridge attach to the smartphone.

While conventional tabletop microscopes shine light through the sample from above, the Shih lab’s technology launches the light from the side of the slide, which is about one millimeter thick. The LED light travels through the glass, refracting to allow the observer to view cell nuclei and structure.

That’s both less expensive and less complicated to operate, Shih said.

“To pursue ultra-simplicity for open-source do-it-yourself fluorescence smartphone microscopy, we report the development of an integrated single lens add-on for multi-color fluorescence imaging,” the researchers wrote. In addition to Shih, those involved with the project include Yulung Sung, a doctoral student in the Department of Electrical and Computer Engineering at UH, and undergraduate Fernando Campa.

Results from testing water samples for pathogens including Giardia lamblia and Cyrptosporidium parvum using the technology were compared with results obtained using a tabletop optical microscope. Resolution was slightly higher with the optical microscope, but the researchers reported resolution of two microns with the smartphone technology.

Shih said he looks forward to seeing the device used by people outside the scientific community.

“I feel more and more excited about seeing people adopt simple basic scientific gadgets,” he said. “I think it will have more impact if we let people play with it, rather than trying to hold it as a secret. We should make it as easy and accessible as possible for everyone.”

Related Articles Read More >

A photo of Capstan Medical's mitral valve implant, which uses nitinol.
Capstan Medical’s R&D head discusses the heart valve and robotics startup’s tech, engineering challenges and solutions, advice for others in medtech and how to join his team
An illustration of a neurosurgeon using a robotic endoscope to remove a brain tumor.
MDO Nitinol Innovation Special Report
A photo of Highridge Medical CEO Rebecca Whitney.
Highridge Medical is betting on this spine tech
A photo of the miniature Auxilium Biotechnologies implants made on the International Space Station.
Implants 3D-printed in space could enable nerve regeneration
“mdo
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest medical device business news, application and technology trends.

DeviceTalks Weekly

See More >

MDO Digital Edition

Digital Edition

Subscribe to Medical Design & Outsourcing. Bookmark, share and interact with the leading medical design engineering magazine today.

MEDTECH 100 INDEX

Medtech 100 logo
Market Summary > Current Price
The MedTech 100 is a financial index calculated using the BIG100 companies covered in Medical Design and Outsourcing.
DeviceTalks

DeviceTalks is a conversation among medical technology leaders. It's events, podcasts, webinars and one-on-one exchanges of ideas & insights.

DeviceTalks

New MedTech Resource

Medical Tubing

MassDevice

Mass Device

The Medical Device Business Journal. MassDevice is the leading medical device news business journal telling the stories of the devices that save lives.

Visit Website
MDO ad
Medical Design and Outsourcing
  • MassDevice
  • DeviceTalks
  • MedTech100 Index
  • Medical Tubing + Extrusion
  • Medical Design Sourcing
  • Drug Delivery Business News
  • Drug Discovery & Development
  • Pharmaceutical Processing World
  • R&D World
  • About Us/Contact
  • Advertise With Us
  • Subscribe to Print Magazine
  • Subscribe to our E-Newsletter
  • Listen to our Weekly Podcasts
  • Join our DeviceTalks Tuesdays Discussion

Copyright © 2025 WTWH Media, LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media LLC. Site Map | Privacy Policy | RSS

Search Medical Design & Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Supplies and Components Index
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • MedTech Resources
    • Medtech Events in 2025
    • The 2024 Medtech Big 100
    • Medical Device Handbook
    • MedTech 100 Index
    • Subscribe to Print Magazine
    • DeviceTalks
    • Digital Editions
    • eBooks
    • Manufacturer Search
    • Podcasts
    • Print Subscription
    • Webinars / Digital Events
    • Whitepapers
    • Voices
    • Video
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Women in Medtech
  • Advertise
  • Subscribe