Medical Design and Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Supplies and Components Index
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • MedTech Resources
    • Medtech Events in 2025
    • The 2024 Medtech Big 100
    • Medical Device Handbook
    • MedTech 100 Index
    • Subscribe to Print Magazine
    • DeviceTalks
    • Digital Editions
    • eBooks
    • Educational Assets
    • Manufacturer Search
    • Podcasts
    • Print Subscription
    • Webinars / Digital Events
    • Whitepapers
    • Voices
    • Views
    • Video
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Women in Medtech
  • Advertise
  • Subscribe

Enhancing catheter steerability and deflection

November 7, 2017 By Danielle Kirsh

medicalmurray_steerablecath2

[Image from Medical Murray]

It’s all in the tip when it comes to making catheters with state-of-the-art steerability and deflection.

Andy Black and Tanner Hargens, Medical Murray

Steerable catheters

Catheters often need to navigate tortuous anatomy with precise control of the catheter tip. Steerable catheters are often utilized for access into side branches from parent vessels to introduce guidewires and other devices into desired locations. The ability to steer a catheter is generally measured by how well torque is transferred from the proximal end of the catheter to the distal end while the catheter retains the desired shape.

Sufficient “steerability” can be achieved by reinforcing the catheter shaft with braided wire to enhance torque transmission and provide kink resistance. A common steerable catheter is constructed by braiding wire over a lubricious liner, which serves as the working channel, followed by melting and compressing an outer layer of thermoplastic onto the braided liner to create a single fused composite.

Many steerable catheters have a preset shape at the distal tip. These preset tip shapes can be manipulated with guidewires and shaft rotation for access to challenging anatomy. There are a large variety of preset tip shapes including a slight angle, cobra, visceral, pigtail, etc.

Deflectable catheters

Some catheters may be required to place the catheter tip very precisely for a prolonged period at body temperature. Examples include guiding catheters, endoscopy, imaging catheters and tissue ablation. For these more challenging needs, deflecting the tip into a defined curve can control the catheter tip location.

One of the most common ways to deflect the tip of a catheter is by pulling a wire that runs the length of the catheter shaft and anchors itself within the distal tip of the catheter. This type of deflectable catheter design usually has a relatively stiff proximal shaft and a softer distal tip, allowing the distal tip to deflect when the wire is pulled. Using various durometers of the thermoplastic outer layer, melted onto the braided liner, commonly alters the shaft stiffness.

Deflectable catheters incorporate a dedicated liner running the entire length of the catheter, to allow the pull wire to move freely between the soft distal tip and the stiffer proximal shaft segments when they are all joined together. The pull wire is typically anchored by welding the wire to a ring and then embedding the ring within the distal end of the catheter. The location of the embedded ring will dictate the deflected shape when the wire is pulled from the proximal end.

For catheters that need to deflect in two directions, two pull wires will be used. Separate liners will be dedicated to each pull wire, and the wires will typically be welded to the ring embedded in the tip 180° relative to each other. These pull wires can be connected to a levered bell-crank mechanism in the handle for simple and smooth control of the tip with two directions of deflection.

Advanced design considerations

There’s an increasing need for more advanced design and material considerations to alter the steerability and deflection of the catheter. For example, structural heart implant delivery systems must navigate a tortuous path and then maintain the intended shape while a relatively large, rigid implant is advanced through the catheter.

These more advanced catheter systems often require varying degrees of deflection, such as slight deflection in one segment with a very tight deflection curve in another segment. Straight lengths of catheter shaft between these deflection segments can also be utilized to create “reach” for optimal tip location when deploying other devices through the catheter.

Multiple deflection zones can be integrated into the length of the catheter by varying the outer layer materials, the shaft reinforcement and/or the pull wire anchor locations. Varying the outer layer materials typically involves changing the durometer of the material. The shaft reinforcement may be altered by changing the braid pattern, transitioning from braid to coil, or encapsulating a lasercut hypotube. The pull wires can be anchored at different locations along the length of the catheter or be radially offset when welded to the same anchor ring.

All of the options above can be combined for a near limitless variety of desired results. Assembly of catheters that combine these features can require a surprisingly amount of subtle finesse.

Emerging technologies

New methods of catheter navigation are emerging. Rather than utilizing a pull wire, force can be transmitted to the distal tip using concentric tubes or small hydraulic chambers positioned within the tip of the catheter. Force can be generated within the tip by electric or thermal energy. Magnets can also be integrated into the tip and then controlled by external magnetic systems. Any one of these new technologies may ultimately displace the current methods of steerable and deflectable catheters.

Andy Black heads all product development from initial concept to manufacturing and leads project teams at Medical Murray’s four facilities nationwide. Tanner Hargens has extensive expertise in device design and commercialization and directs the sales engineering team at Medical Murray (North Barrington, Ill.).

About The Author

Danielle Kirsh

Danielle Kirsh is an award-winning journalist and senior editor for Medical Design & Outsourcing, MassDevice, and Medical Tubing + Extrusion, and the founder of Women in Medtech and lead editor for Big 100. She received her bachelor's degree in broadcast journalism and mass communication from Norfolk State University and is pursuing her master's in global strategic communications at the University of Florida. You can connect with her on Twitter and LinkedIn, or email her at dkirsh@wtwhmedia.com.

Related Articles Read More >

An illustration of Embolization Inc.'s Nitinol Enhanced Device (NED).
This nitinol vascular embolization device has another shape memory material up its sleeve
July 2025 edition: The Surgical Robotics issue, featuring Capstan Medical, J&J and Zimmer Biomet
An illustration of the Endogenex ReCET system inside a patient.
This minimally invasive diabetes device delivers pulsed field energy in the gut
This is a rendering of the new manufacturing facility that Quasar Medical plans in Thailand.
Quasar Medical breaks ground on new Thailand manufacturing center
“mdo
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest medical device business news, application and technology trends.

DeviceTalks Weekly

See More >

MDO Digital Edition

Digital Edition

Subscribe to Medical Design & Outsourcing. Bookmark, share and interact with the leading medical design engineering magazine today.

MEDTECH 100 INDEX

Medtech 100 logo
Market Summary > Current Price
The MedTech 100 is a financial index calculated using the BIG100 companies covered in Medical Design and Outsourcing.
DeviceTalks

DeviceTalks is a conversation among medical technology leaders. It's events, podcasts, webinars and one-on-one exchanges of ideas & insights.

DeviceTalks

New MedTech Resource

Medical Tubing

MassDevice

Mass Device

The Medical Device Business Journal. MassDevice is the leading medical device news business journal telling the stories of the devices that save lives.

Visit Website
MDO ad
Medical Design and Outsourcing
  • MassDevice
  • DeviceTalks
  • MedTech100 Index
  • Medical Tubing + Extrusion
  • Medical Design Sourcing
  • Drug Delivery Business News
  • Drug Discovery & Development
  • Pharmaceutical Processing World
  • R&D World
  • About Us/Contact
  • Advertise With Us
  • Subscribe to Print Magazine
  • Subscribe to our E-Newsletter
  • Listen to our Weekly Podcasts
  • Join our DeviceTalks Tuesdays Discussion

Copyright © 2025 WTWH Media, LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media LLC. Site Map | Privacy Policy | RSS

Search Medical Design & Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Supplies and Components Index
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • MedTech Resources
    • Medtech Events in 2025
    • The 2024 Medtech Big 100
    • Medical Device Handbook
    • MedTech 100 Index
    • Subscribe to Print Magazine
    • DeviceTalks
    • Digital Editions
    • eBooks
    • Educational Assets
    • Manufacturer Search
    • Podcasts
    • Print Subscription
    • Webinars / Digital Events
    • Whitepapers
    • Voices
    • Views
    • Video
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Women in Medtech
  • Advertise
  • Subscribe