Medical Design and Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Supplies and Components Index
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • MedTech Resources
    • Medtech Events in 2025
    • The 2024 Medtech Big 100
    • Medical Device Handbook
    • MedTech 100 Index
    • Subscribe to Print Magazine
    • DeviceTalks
    • Digital Editions
    • eBooks
    • Manufacturer Search
    • Podcasts
    • Print Subscription
    • Webinars / Digital Events
    • Whitepapers
    • Voices
    • Video
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Women in Medtech
  • Advertise
  • Subscribe

High-Speed Whole-Brain Imaging Improves Understanding of Brain Disease

July 11, 2017 By Osaka University

This is a FAST setup and whole-brain imaging in mouse and marmoset. (Credit: Osaka University)

To fully understand brain function and dysfunction, it is important to be able to visualize changes in anatomy and activity in the whole brain. High-resolution brain imaging that can distinguish individual cells and quantitative comparison of acquired data are essential to show how the brain is affected by disease.

However, current attempts to image a whole mouse brain at a resolution high enough to gain detailed information take up to one week. While these approaches have revealed important insights into brain function, it is not possible to image and analyze multiple brains with these technologies. Comparing multiple brains is essential to understand neurobiological function and dysfunction in brain disorders.

Osaka University-led researchers have developed block-face serial microscopy tomography (FAST)–an imaging system that can image a whole mouse brain at high spatial resolution in less than two-and-a-half hours. “FAST consists of a spinning disk confocal microscope with built in microslicer and a method for processing image data,” explains first author Kaoru Seiriki. “With our 3D reconstruction technique, whole brains can be visualized at a resolution high enough to resolve individual cells and their subcellular structures.”

By combining their FAST technique with specific staining procedures, Seiriki and colleagues were able to visualize subcellular nuclei, vascular structures, mature oligodendrocytes, myelin sheaths, interneurons, and projecting neurons throughout the whole brain. These imaging tools provide a systemic approach to investigating the pathophysiological mechanisms of different brain diseases.

FAST is a very quick imaging technique, therefore it can potentially be used to image non-human primate brains. “We successfully visualized a long-range neuronal projection at a subcellular resolution in the whole brain of an adult marmoset,” says leading researcher Hitoshi Hashimoto. “This shows how FAST can further our understanding of brain anatomy in rodents and primates.”

The Osaka University research team has also successfully imaged postmortem human brains using their FAST system. “We expect that this approach will identify fine morphological abnormalities in diseased human brains that were previously unknown,” says Hashimoto. These insights may help to advance the development of effective treatments.

This new technique offers a way to compare multiple brains at the level of individual cells and their subcellular structures. With this approach, new insights will be gained into the pathological mechanisms of different brain diseases. Furthermore, the applicability of this offers a translational approach to researching non-human animal models and human diseases.

Related Articles Read More >

Axoft Fleuron brain-computer interface BCI probe
Axoft makes Fleuron BCI material available for purchase, inks license deal with Stanford
A photo of nitinol, a nickel-titanium alloy used for medical devices such as stents, heart valves, catheters and orthopedics.
What is nitinol and where is it used?
UC Berkeley and UC San Diego researchers develop way to restore speech using BCIs (1)
Researchers use BCIs to restore speech in people with paralysis
An image of Abbott's Infinity deep brain stimulation (DBS) implants and leads.
As Abbott studies DBS for depression, what might be next?
“mdo
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest medical device business news, application and technology trends.

DeviceTalks Weekly

See More >

MDO Digital Edition

Digital Edition

Subscribe to Medical Design & Outsourcing. Bookmark, share and interact with the leading medical design engineering magazine today.

MEDTECH 100 INDEX

Medtech 100 logo
Market Summary > Current Price
The MedTech 100 is a financial index calculated using the BIG100 companies covered in Medical Design and Outsourcing.
DeviceTalks

DeviceTalks is a conversation among medical technology leaders. It's events, podcasts, webinars and one-on-one exchanges of ideas & insights.

DeviceTalks

New MedTech Resource

Medical Tubing

MassDevice

Mass Device

The Medical Device Business Journal. MassDevice is the leading medical device news business journal telling the stories of the devices that save lives.

Visit Website
MDO ad
Medical Design and Outsourcing
  • MassDevice
  • DeviceTalks
  • MedTech100 Index
  • Medical Tubing + Extrusion
  • Medical Design Sourcing
  • Drug Delivery Business News
  • Drug Discovery & Development
  • Pharmaceutical Processing World
  • R&D World
  • About Us/Contact
  • Advertise With Us
  • Subscribe to Print Magazine
  • Subscribe to our E-Newsletter
  • Listen to our Weekly Podcasts
  • Join our DeviceTalks Tuesdays Discussion

Copyright © 2025 WTWH Media, LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media LLC. Site Map | Privacy Policy | RSS

Search Medical Design & Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Supplies and Components Index
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • MedTech Resources
    • Medtech Events in 2025
    • The 2024 Medtech Big 100
    • Medical Device Handbook
    • MedTech 100 Index
    • Subscribe to Print Magazine
    • DeviceTalks
    • Digital Editions
    • eBooks
    • Manufacturer Search
    • Podcasts
    • Print Subscription
    • Webinars / Digital Events
    • Whitepapers
    • Voices
    • Video
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Women in Medtech
  • Advertise
  • Subscribe