Medical Design and Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Supplies and Components Index
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • MedTech Resources
    • Medtech Events in 2025
    • The 2024 Medtech Big 100
    • Medical Device Handbook
    • MedTech 100 Index
    • Subscribe to Print Magazine
    • DeviceTalks
    • Digital Editions
    • eBooks
    • Manufacturer Search
    • Podcasts
    • Print Subscription
    • Webinars / Digital Events
    • Whitepapers
    • Voices
    • Video
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Women in Medtech
  • Advertise
  • Subscribe

High-Tech Sensors for Better Breast Exams

December 14, 2016 By Sam Million-Weaver, Phys.org

(Credit: University of Wisconsin-Madison)

Clinical breast examinations can save women’s lives, but, as doctors-in-training, new residents sometimes aren’t thorough or experienced enough to detect potentially cancerous abnormalities.

Now, future physicians could learn to give high-quality breast exams with help from high-tech sensors developed by University of Wisconsin-Madison engineers.

“This whole project is about facilitating the training of residents,” says Hongrui Jiang, Lynn H. Matthias Professor in Engineering and Vilas Distinguished Achievement Professor in electrical and computer engineering.

The project is working toward creating small fingertip sensors that can measure the pressure and hand motions used by physicians when probing for lumps. New residents will be able to compare their own exams against standards established from experienced doctors, and obtain feedback on whether or not they are being sufficiently thorough.

Experienced clinicians long have been looking for an effective tool to establish standards for high-quality breast exams. Dr. Carla Pugh, the Susan Behrens, MD Professor of Surgical Education and a professor of industrial and systems engineering at UW-Madison, has attempted for years to create such a device, but the available sensing technology simply couldn’t capture all of the subtle motions necessary for performing a comprehensive breast examination.

“They were using commercial products—but the sensors were not very good,” says Jiang. “Commercial sensors have serious limitations.”

Hongrui Jiang (left) and Jayer Fernandez hook up a prototype of the new sensor to the readout that can give clinicians information about their hand motions during breast exams. (Credit: Stephanie Precourt)

While some of the existing devices could quantify direct pressure reasonably well, nothing existed that could also measure the side-to-side and circular motion that real-world clinical procedures entail. So Pugh approached Jiang for help.

“It was very hard; we couldn’t figure out a nice way to handle the problem until a year ago, when we had an ‘aha’ moment,” says Jiang.

Jiang and his student, Jayer Fernandez, realized that one traditional capacitive sensor alone couldn’t possibly measure all of the necessary parameters. Instead, they fashioned a device that integrates information from four overlapping components to quantify pressure and shear from all three dimensions.

That novel approach earned Fernandez top honors at the Institute of Electrical and Electronics Engineers’ prestigious Sensors Conference in fall 2016. Fernandez gave a brief, informal presentation to a panel of experts, who were impressed by the capabilities of the device.

“I’ve never done an elevator pitch before, but it went well. People asked me a lot of interesting questions. I described why our sensor is more sensitive to the force range that we’re looking at and gives us a nice way to do the readout in different directions,” says Fernandez.

Currently the researchers are working to further miniaturize the sensor, and to combine data from multiple devices at once. They will continue to collaborate with Pugh and other clinicians to develop the most useful device for working doctors.

“There’s a real need to improve physician training,” says Jiang. “We didn’t realize there was such a clinical need. It’s a very challenging problem, but very interesting and very significant.”

Related Articles Read More >

An image of Abbott's Infinity deep brain stimulation (DBS) implants and leads.
How Abbott developed the first-of-its-kind Infinity DBS system
Axoft Fleuron brain-computer interface BCI probe
Axoft makes Fleuron BCI material available for purchase, inks license deal with Stanford
An illustration showing the Edwards Lifesciences Sapien M3 transcatheter mitral valve replacement (TMVR) system's valve being placed in the heart. [Image courtesy of Edwards Lifesciences]
The top nitinol cardiac medtech news of 2025 (so far)
An illustration showing the Edwards Lifesciences Sapien M3 transcatheter mitral valve replacement (TMVR) system's valve being placed in the heart. [Image courtesy of Edwards Lifesciences]
Q&A with Darshin Patel, who led the Edwards Lifesciences Sapien M3 TMVR system’s development
“mdo
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest medical device business news, application and technology trends.

DeviceTalks Weekly

See More >

MDO Digital Edition

Digital Edition

Subscribe to Medical Design & Outsourcing. Bookmark, share and interact with the leading medical design engineering magazine today.

MEDTECH 100 INDEX

Medtech 100 logo
Market Summary > Current Price
The MedTech 100 is a financial index calculated using the BIG100 companies covered in Medical Design and Outsourcing.
DeviceTalks

DeviceTalks is a conversation among medical technology leaders. It's events, podcasts, webinars and one-on-one exchanges of ideas & insights.

DeviceTalks

New MedTech Resource

Medical Tubing

MassDevice

Mass Device

The Medical Device Business Journal. MassDevice is the leading medical device news business journal telling the stories of the devices that save lives.

Visit Website
MDO ad
Medical Design and Outsourcing
  • MassDevice
  • DeviceTalks
  • MedTech100 Index
  • Medical Tubing + Extrusion
  • Medical Design Sourcing
  • Drug Delivery Business News
  • Drug Discovery & Development
  • Pharmaceutical Processing World
  • R&D World
  • About Us/Contact
  • Advertise With Us
  • Subscribe to Print Magazine
  • Subscribe to our E-Newsletter
  • Listen to our Weekly Podcasts
  • Join our DeviceTalks Tuesdays Discussion

Copyright © 2025 WTWH Media, LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media LLC. Site Map | Privacy Policy | RSS

Search Medical Design & Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Supplies and Components Index
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • MedTech Resources
    • Medtech Events in 2025
    • The 2024 Medtech Big 100
    • Medical Device Handbook
    • MedTech 100 Index
    • Subscribe to Print Magazine
    • DeviceTalks
    • Digital Editions
    • eBooks
    • Manufacturer Search
    • Podcasts
    • Print Subscription
    • Webinars / Digital Events
    • Whitepapers
    • Voices
    • Video
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Women in Medtech
  • Advertise
  • Subscribe