Medical Design and Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Supplies and Components Index
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • MedTech Resources
    • Medtech Events in 2025
    • The 2024 Medtech Big 100
    • Medical Device Handbook
    • MedTech 100 Index
    • Subscribe to Print Magazine
    • DeviceTalks
    • Digital Editions
    • eBooks
    • Educational Assets
    • Manufacturer Search
    • Podcasts
    • Print Subscription
    • Webinars / Digital Events
    • Whitepapers
    • Voices
    • Video
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Women in Medtech
  • Advertise
  • Subscribe

These nanostraws can sample cells without damaging them

February 22, 2017 By Chris Newmarker

nanostraws cell structure Stanford

[Image by Royroydeb – Own work, CC BY-SA 4.0]

Stanford University researchers say they’ve developed nanostraws capable of sampling cell contents—all without disrupting natural processes.

The innovation has the potential to provide non-destructive cell monitoring versus lysing, the cell sampling method presently used. Lysing ruptures the cell, while the sampling method developed at Stanford relies on tiny tubes that are 600 times smaller than a strand of hair. The nanostraws penetrate the cell’s outer membrane without damage, sampling proteins and genetic material inside the cell.

The method is like a “blood draw for the cell,” says Nicholas Melosh, an associate professor of materials science and engineering and senior author of the paper describing the research. Melosh and his colleagues recently published the paper in the  Proceedings of the National Academy of Sciences.

Melosh envisions the nanostraw sampling technique enabling long-term, non-destructive monitoring of cells, providing a much better understanding of cell development. Thanks to the nanostraws, researchers could hopefully gain a much better understanding of stem cell development or the effectiveness of cancer therapies.

“What we hope to do, using this technology, is to watch as these cells change over time and be able to infer how different environmental conditions and ‘chemical cocktails’ influence their development—to help optimize the therapy process,” Melosh said in a Stanford news release.

It took years of trial and error for Melosh and his team to create the gumball-sized Nanostraw Extraction (NEX) sampling system on which the nanostraws are grown. NEX mimics the intercellular gates, called gap junctions, through which cells send each other nutrients and other molecules, though NEX instead samples contents from inside the cells.

Not only did Melosh and his team have to perfect NEX, but they then had to prove that it could sample as effectively as lysing. The compared the nanostraw method with lysing not only for generic cell lines but also with human heart tissue and brain cells grown from stem cells. They demonstrated that the nanostraw method mostly showed the same contents as lysing.

Melosh suspects nanostraws are going to become a hot tool for cellular research.

“We want as many people to use this technology as possible,” Melosh said. “We’re trying to help advance science and technology to benefit mankind.”

[Want to stay more on top of MDO content? Subscribe to our weekly e-newsletter.]

About The Author

Chris Newmarker

Chris Newmarker is the executive editor of WTWH Media life science's news websites and publications including MassDevice, Medical Design & Outsourcing and more. A professional journalist of 18 years, he is a veteran of UBM (now Informa) and The Associated Press whose career has taken him from Ohio to Virginia, New Jersey and, most recently, Minnesota. He’s covered a wide variety of subjects, but his focus over the past decade has been business and technology. He holds bachelor’s degrees in journalism and political science from Ohio State University. Connect with him on LinkedIn or email at cnewmarker@wtwhmedia.com.

Related Articles Read More >

A photo showing Assistant Professor Yeo Kee Thai and KKH Dr. Genevieve Llanora showing the BLIPI device for newborn blood testing.
New device uses single drop of blood to assess newborn immune health
A photo of the probiotic-powered dissolvable batteries.
Probiotics-powered bioresorbable battery can run more than 100 minutes, researchers say
A photo of Capstan Medical's mitral valve implant, which uses nitinol.
Capstan Medical’s R&D head discusses the heart valve and robotics startup’s tech, engineering challenges and solutions, advice for others in medtech and how to join his team
Close-up view of a transparent vascular model held by fingers, showcasing the milli-spinner device — a tiny, hollow rotating tube with fins and slits designed to generate localized suction for shrinking blood clots without rupturing them.
This device could double stroke clot removal success
“mdo
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest medical device business news, application and technology trends.

DeviceTalks Weekly

See More >

MDO Digital Edition

Digital Edition

Subscribe to Medical Design & Outsourcing. Bookmark, share and interact with the leading medical design engineering magazine today.

MEDTECH 100 INDEX

Medtech 100 logo
Market Summary > Current Price
The MedTech 100 is a financial index calculated using the BIG100 companies covered in Medical Design and Outsourcing.
DeviceTalks

DeviceTalks is a conversation among medical technology leaders. It's events, podcasts, webinars and one-on-one exchanges of ideas & insights.

DeviceTalks

New MedTech Resource

Medical Tubing

MassDevice

Mass Device

The Medical Device Business Journal. MassDevice is the leading medical device news business journal telling the stories of the devices that save lives.

Visit Website
MDO ad
Medical Design and Outsourcing
  • MassDevice
  • DeviceTalks
  • MedTech100 Index
  • Medical Tubing + Extrusion
  • Medical Design Sourcing
  • Drug Delivery Business News
  • Drug Discovery & Development
  • Pharmaceutical Processing World
  • R&D World
  • About Us/Contact
  • Advertise With Us
  • Subscribe to Print Magazine
  • Subscribe to our E-Newsletter
  • Listen to our Weekly Podcasts
  • Join our DeviceTalks Tuesdays Discussion

Copyright © 2025 WTWH Media, LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media LLC. Site Map | Privacy Policy | RSS

Search Medical Design & Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Supplies and Components Index
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • MedTech Resources
    • Medtech Events in 2025
    • The 2024 Medtech Big 100
    • Medical Device Handbook
    • MedTech 100 Index
    • Subscribe to Print Magazine
    • DeviceTalks
    • Digital Editions
    • eBooks
    • Educational Assets
    • Manufacturer Search
    • Podcasts
    • Print Subscription
    • Webinars / Digital Events
    • Whitepapers
    • Voices
    • Video
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Women in Medtech
  • Advertise
  • Subscribe