Medical Design and Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Supplies and Components Index
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • MedTech Resources
    • Medtech Events in 2025
    • The 2024 Medtech Big 100
    • Medical Device Handbook
    • MedTech 100 Index
    • Subscribe to Print Magazine
    • DeviceTalks
    • Digital Editions
    • eBooks
    • Manufacturer Search
    • Podcasts
    • Print Subscription
    • Webinars / Digital Events
    • Whitepapers
    • Voices
    • Video
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Women in Medtech
  • Advertise
  • Subscribe

New Screening Technique Requires Just One Drop

October 9, 2014 By Emil Venere, Purdue University

A new technique called slug flow microextraction makes it possible to quickly detect the presence of drugs or to monitor certain medical conditions using only a single drop of blood or urine. The technique involves drawing a specimen into a glass capillary that also contains an organic solvent and rocking the capillary back and forth several times to extract target molecules from the biological sample into the solvent. (Credit: Purdue University/Weldon School of Biomedical Engineering)A new technique makes it possible to quickly detect the presence of drugs or to monitor certain medical conditions using only a single drop of blood or urine, representing a potential tool for clinicians and law enforcement.

The technique works by extracting minute quantities of target molecules contained in specimens of blood, urine or other biological fluids, and then testing the sample with a mass spectrometer.

Testing carried out with the technology takes minutes, whereas conventional laboratory methods take hours or days to yield results and require a complex sequence of steps, said Zheng Ouyang (pronounced Jung O-Yong), an associate professor in Purdue University’s Weldon School of Biomedical Engineering.

“We’ve converted a series of operations into a single extraction process requiring only a pinprick’s worth of blood,” he said.

The method, called “slug flow microextraction,” could be used to detect steroids in urine for drug screening in professional sports and might be combined with a miniature mass spectrometer also being commercialized. The combined technologies could bring a new class of compact instruments for medicine and research, Ouyang said.

Findings are detailed in a paper appeared online Oct. 5 in the research journal Angewandte Chemie International Edition. The paper was authored by graduate student Yue Ren, undergraduate student Morgan N. McLuckey, former postdoctoral research associate Jiangjiang Liu and Ouyang.

The researchers demonstrated the technique, using it to perform therapeutic-drug monitoring, which has potential applications in drug development and personalized therapy; to monitor enzyme function, as demonstrated for acetylcholinesterase, which is directly related to the symptoms and therapy for Alzheimer’s disease; to detect steroids, yielding results in one minute; and to test for illicit drugs.

“In the future, for example, parents might be able to test their children’s urine for drugs with a simple cartridge they would take to the corner drug store, where a desktop mass spectrometer would provide results in a few minutes,” Ouyang said.

The technique involves drawing a specimen into a glass capillary that also contains the organic solvent ethyl acetate.

Like oil and water, the two fluids are immiscible, and an interface is formed between the specimen and the solvent. Gently rocking the capillary back and forth several times causes small amounts of target molecules in the biological sample to cross this interface into the solvent side without mixing the two fluids.

“You don’t want to mix these two, you want to extract only the biomarkers you are looking for and leave the junk behind because mass spectrometry is very sensitive to impurities,” Ouyang said.

Then the solvent containing the biomarkers is subjected to a high-voltage current, ionizing the sample so that it can be analyzed with mass spectrometry.

Researchers have used microextraction for other applications.

“I think this is the first time it has been applied to a biological sample for mass spectrometry,” Ouyang said. “You just use a pinprick of blood, and the analysis is completed in minutes.”

When combined with the miniature mass spectrometer also developed at Purdue the method represents a mobile system for medical professionals, researchers and law enforcement.

Mass spectrometry works by turning molecules into ions, or electrically charged versions of themselves, inside the instrument’s vacuum chamber. Once ionized, the molecules can be more easily manipulated, detected and analyzed based on their masses. The new approach uses a method called nanoESI – or nano electrospray ionization – in which the ionization step is performed in the air or directly on surfaces and does not require a vacuum chamber.

Although the research was conducted using a conventional laboratory mass spectrometer, the same nanoESI operation could be carried out with the new miniature mass spectrometer. Whereas conventional mass spectrometers are bulky instruments that weigh more than 300 pounds, Purdue researchers have recently completed their latest version of the miniature mass spectrometer, the Mini 12, which weighs 40 pounds, is 12.5 inches wide and 16 inches high.

“The sampling ionization technologies like slug flow microextraction could make the miniature mass spectrometers perform the actual testing without requiring other equipment for sample treatment,” Ouyang said. “This will bring a new class of compact medical instruments.”

The research has been funded by the National Institutes of Health.

The work to develop the miniature mass spectrometer has been supported by the NIH and National Science Foundation and is led by Ouyang and R. Graham Cooks, the Henry Bohn Hass Distinguished Professor of Chemistry in Purdue’s College of Science.

U.S. patent applications have been filed for the microextraction and miniature mass spectrometry. The technologies may be commercialized through a new company formed after partnership agreements were signed in 2013 by Purdue and Tsinghua University.

“The overall goal is to use this technology for developing disposable sample cartridges to work with our mini mass spectrometry system in clinical and especially the point-of-care applications in a doctor’s office,” Ouyang said. 

Related Articles Read More >

An illustration showing the Edwards Lifesciences Sapien M3 transcatheter mitral valve replacement (TMVR) system's valve being placed in the heart. [Image courtesy of Edwards Lifesciences]
Q&A with Darshin Patel, who led the Edwards Lifesciences Sapien M3 TMVR system’s development
A photo of nitinol, a nickel-titanium alloy used for medical devices such as stents, heart valves, catheters and orthopedics.
What is nitinol and where is it used?
A photo of the Northwestern University pacemaker surrounded by grains of rice for scale [Photo courtesy of Northwestern]
Researchers develop tiny pacemaker that’s injectable and bioabsorbable
An illustration showing the Edwards Lifesciences Sapien M3 transcatheter mitral valve replacement (TMVR) system's dock being placed in the heart. [Image courtesy of Edwards Lifesciences]
The Edwards Lifesciences Sapien M3 transcatheter mitral valve replacement system uses nitinol in a new way
“mdo
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest medical device business news, application and technology trends.

DeviceTalks Weekly

See More >

MDO Digital Edition

Digital Edition

Subscribe to Medical Design & Outsourcing. Bookmark, share and interact with the leading medical design engineering magazine today.

MEDTECH 100 INDEX

Medtech 100 logo
Market Summary > Current Price
The MedTech 100 is a financial index calculated using the BIG100 companies covered in Medical Design and Outsourcing.
DeviceTalks

DeviceTalks is a conversation among medical technology leaders. It's events, podcasts, webinars and one-on-one exchanges of ideas & insights.

DeviceTalks

New MedTech Resource

Medical Tubing

MassDevice

Mass Device

The Medical Device Business Journal. MassDevice is the leading medical device news business journal telling the stories of the devices that save lives.

Visit Website
MDO ad
Medical Design and Outsourcing
  • MassDevice
  • DeviceTalks
  • MedTech100 Index
  • Medical Tubing + Extrusion
  • Medical Design Sourcing
  • Drug Delivery Business News
  • Drug Discovery & Development
  • Pharmaceutical Processing World
  • R&D World
  • About Us/Contact
  • Advertise With Us
  • Subscribe to Print Magazine
  • Subscribe to our E-Newsletter
  • Listen to our Weekly Podcasts
  • Join our DeviceTalks Tuesdays Discussion

Copyright © 2025 WTWH Media, LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media LLC. Site Map | Privacy Policy | RSS

Search Medical Design & Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Supplies and Components Index
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • MedTech Resources
    • Medtech Events in 2025
    • The 2024 Medtech Big 100
    • Medical Device Handbook
    • MedTech 100 Index
    • Subscribe to Print Magazine
    • DeviceTalks
    • Digital Editions
    • eBooks
    • Manufacturer Search
    • Podcasts
    • Print Subscription
    • Webinars / Digital Events
    • Whitepapers
    • Voices
    • Video
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Women in Medtech
  • Advertise
  • Subscribe