Medical Design and Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Supplies and Components Index
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • MedTech Resources
    • Medtech Events in 2025
    • The 2024 Medtech Big 100
    • Medical Device Handbook
    • MedTech 100 Index
    • Subscribe to Print Magazine
    • DeviceTalks
    • Digital Editions
    • eBooks
    • Educational Assets
    • Manufacturer Search
    • Podcasts
    • Print Subscription
    • Webinars / Digital Events
    • Whitepapers
    • Voices
    • Video
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Women in Medtech
  • Advertise
  • Subscribe

New “Sperm Radar” Test May Uncover Secrets About Male Infertility

May 30, 2017 By University of Sheffield

This is a magnetic resonance spectroscopy. (Credit: University of Sheffield)

Scientists at the University of Sheffield have developed a new technique to examine human sperm without killing them — helping to improve the diagnosis of fertility problems.

The Magnetic Resonance Spectroscopy technique, uses powerful magnets and works like radar by firing pulses of energy at the sperm sample inside a purpose built scanner and then listening to the echoed signal by the molecules in response. This could help to distinguish between populations of good or poor sperm.

Unlike other more destructive examination methods, the low energy pulses do not damage sperm, meaning they could potentially go on to be used in IVF treatment. This is similar to a technique that doctors use to capture images of cells and tissues inside the body.

The novel approach was pioneered by physicists from the University of Sheffield’s Academic Unit of Radiology working together with fertility experts from the University’s Academic Unit of Reproductive and Developmental Medicine in the interdisciplinary spermNMR project.

Professor Martyn Paley, from the University’s Department of Infection, Immunity and Cardiovascular Disease, says, “The technique of Magnetic Resonance Spectroscopy has been previously used to examine the molecular composition of many cells and tissues in other diseases such as cancer, but it has never previously been used to examine live sperm. As such, these results are a world first.”

During the study, scientists examined fresh sperm samples from healthy volunteers and patients for just over an hour.

From the data gathered scientists were able to build up a profile of the molecules present in the sperm and how they differ between samples.

Professor Allan Pacey, fertility expert from the University of Sheffield, who was part of the spermNMR study team, says, “Most of the advanced techniques we have available to examine the molecules in sperm end up destroying them in the process by either adding stains or by breaking open their membranes to look at the contents.

“To potentially have a technique which can examine the molecular structure of sperm without damaging them is really exciting.”

One of the technical challenges that the team faced was how to detect the molecules that were present in sperm rather than those present in semen, the fluid in which sperm are ejaculated.

To do this, the team examined a number of ‘sperm washing’ techniques that are currently used to prepare sperm for IVF. They found that by spinning the samples very fast in a centrifuge several times they were able to reduce the background noise from molecules in semen to a point where they could reliably detect the ones from sperm.

Research Associate Dr. Sarah Calvert from the spermNMR team, says, “Washing the sperm in a centrifuge is a critical step for this technique to work as any contamination from seminal plasma can also be detected by the scanner. But by adding an extra spin cycle to the techiques that are commonly used in IVF we were able to minimize that contamination.”

The results of the study show that a number of molecules such as Choline (vitamin-like essential nutrient) and Glycerophosphocholine (a natural choline compound found in the brain), Lipids (common components of sperm cell membranes) and Lactate (an end product of cellular energy usage) were significantly different between samples of sperm separated into “good” and “poor” populations.

Research Fellow Dr. Steven Reynolds explains, “The fact we can detect differences in molecular composition between samples of ‘good’ and ‘poor’ sperm is really significant because it opens up the opportunity for us to develop a novel biomarker to help with diagnosis.

“Or it might one day allow us to design specific therapies for men with poor sperm that might help give them a boost.”

Related Articles Read More >

A photo of Capstan Medical's mitral valve implant, which uses nitinol.
Capstan Medical’s R&D head discusses the heart valve and robotics startup’s tech, engineering challenges and solutions, advice for others in medtech and how to join his team
An illustration of a neurosurgeon using a robotic endoscope to remove a brain tumor.
MDO Nitinol Innovation Special Report
A photo of Highridge Medical CEO Rebecca Whitney.
Highridge Medical is betting on this spine tech
A photo of the miniature Auxilium Biotechnologies implants made on the International Space Station.
Implants 3D-printed in space could enable nerve regeneration
“mdo
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest medical device business news, application and technology trends.

DeviceTalks Weekly

See More >

MDO Digital Edition

Digital Edition

Subscribe to Medical Design & Outsourcing. Bookmark, share and interact with the leading medical design engineering magazine today.

MEDTECH 100 INDEX

Medtech 100 logo
Market Summary > Current Price
The MedTech 100 is a financial index calculated using the BIG100 companies covered in Medical Design and Outsourcing.
DeviceTalks

DeviceTalks is a conversation among medical technology leaders. It's events, podcasts, webinars and one-on-one exchanges of ideas & insights.

DeviceTalks

New MedTech Resource

Medical Tubing

MassDevice

Mass Device

The Medical Device Business Journal. MassDevice is the leading medical device news business journal telling the stories of the devices that save lives.

Visit Website
MDO ad
Medical Design and Outsourcing
  • MassDevice
  • DeviceTalks
  • MedTech100 Index
  • Medical Tubing + Extrusion
  • Medical Design Sourcing
  • Drug Delivery Business News
  • Drug Discovery & Development
  • Pharmaceutical Processing World
  • R&D World
  • About Us/Contact
  • Advertise With Us
  • Subscribe to Print Magazine
  • Subscribe to our E-Newsletter
  • Listen to our Weekly Podcasts
  • Join our DeviceTalks Tuesdays Discussion

Copyright © 2025 WTWH Media, LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media LLC. Site Map | Privacy Policy | RSS

Search Medical Design & Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Supplies and Components Index
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • MedTech Resources
    • Medtech Events in 2025
    • The 2024 Medtech Big 100
    • Medical Device Handbook
    • MedTech 100 Index
    • Subscribe to Print Magazine
    • DeviceTalks
    • Digital Editions
    • eBooks
    • Educational Assets
    • Manufacturer Search
    • Podcasts
    • Print Subscription
    • Webinars / Digital Events
    • Whitepapers
    • Voices
    • Video
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Women in Medtech
  • Advertise
  • Subscribe