Medical Design and Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Supplies and Components Index
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • MedTech Resources
    • Medtech Events in 2025
    • The 2024 Medtech Big 100
    • Medical Device Handbook
    • MedTech 100 Index
    • Subscribe to Print Magazine
    • DeviceTalks
    • Digital Editions
    • eBooks
    • Educational Assets
    • Manufacturer Search
    • Podcasts
    • Print Subscription
    • Webinars / Digital Events
    • Whitepapers
    • Voices
    • Views
    • Video
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Women in Medtech
  • Advertise
  • Subscribe

No Sugar Coating, But Sweet Nonetheless

April 5, 2017 By University of Freiburg

No sugar coating. See press release. (Credit: Christian Böhler, Maria Asplund)

Complex neurotechnological devices are required to directly select and influence brain waves inside the skull’s interior. Although it has become relatively easy to implement the devices, researchers are still faced with challenges when trying to keep them running properly in living organisms over time.

But that could be changing now, thanks to a new method from Freiburg.

A research team was able to create a microprobe that grows into the neural tissue without inflammation and with the help of a medicinal coating. Even after twelve weeks it is still able to deliver strong signals.

Now that such implants are no longer required to be replaced as often, they are able to open the doors for better diagnoses while making life easier for the chronically ill — such as Parkinson’s patients that need to be treated with brain stimulation methods.

The study has appeared in the journal „Biomaterials” and is based on the group’s earlier research on conductive and absorbent plastics.

The microsystems engineer Christian Böhler from Dr. Maria Asplund’s junior research group in the Cluster of Excellence BrainLinks-BrainTools, Prof. Dr. Thomas Stieglitz, chair for biomedical microtechnology at the Institute for Microsystem Technology and Prof. Dr. Ulrich G. Hofmann, the section for neuroelectronic systems in the Department of Neurology at the University Hospital Freiburg have participated in the research.

“After a while, the immune system tends to treat most of the bidirectional neural implants – that is, those that are implanted for measuring and stimulating simultaneously – as a foreign object. That is the reason their functionality becomes so limited. After a few weeks they barely give off any signals at all,” says Böhler.

The junior research group has shown that flexible microprobes made of so-called polyimides offer distinct advantages over implants made of silicon, for instance.

“At the same time, inflammatory reactions can arise that make the electrodes unserviceable or that ultimately lead to the implant’s removal,” adds Asplund.

In their study, the researchers show that, based on an animal model, these side effects can be delayed longer by using a special coating on the electrodes placed on the polyimide implant.

The electrodes’ coating is made from the polymer PEDOT that absorbs medicine and, when applying negative voltage, releases it again – in this case, the anti-inflammatory compound dexamethasone.

“In this way, we can pour the medicine directly around the implant, regulate the dosage and determine the time it is administered,” explains Böhler. Compared to traditional methods for drug administering, a much lower dosage can be used. It also makes it possible to limit the effects to a specific area. In that way, undesirable side effects from the medicine can be reduced. As early as the beginning of 2016 the team showed that PEDOT has ideal characteristics as a drug carrier.

“We are able to reinforce the flexible microprobes’ superior nature over other designs with our study,” Asplund summarizes. The implant from the Freiburg microsystems technology even holds together longer.

“We are on the cusp of a breakthrough in a new generation of neuronal interfaces. We can finally build microprobes with a longer shelf life through our coating method.”

Of that Böhler is certain. Many more promising avenues for long-term treatments with, for instance, deep brain stimulation can be explored with this system. Patients whose nervous system requires not only regular stimulation but also close measurements and monitoring, such as those with Parkinson’s or epilepsy as well as people with obsessive-compulsive disorders or severe depression.

Related Articles Read More >

Carnegie Mellon University EEG-based BCI to control robotic hand
Non-invasive BCI enables robotic hand dexterity
A photo of nitinol, a nickel-titanium alloy used for medical devices such as stents, heart valves, catheters and orthopedics.
What is nitinol and where is it used?
How this device broke through the blood-brain barrier
A photo of the miniature Auxilium Biotechnologies implants made on the International Space Station.
Implants 3D-printed in space could enable nerve regeneration
“mdo
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest medical device business news, application and technology trends.

DeviceTalks Weekly

See More >

MDO Digital Edition

Digital Edition

Subscribe to Medical Design & Outsourcing. Bookmark, share and interact with the leading medical design engineering magazine today.

MEDTECH 100 INDEX

Medtech 100 logo
Market Summary > Current Price
The MedTech 100 is a financial index calculated using the BIG100 companies covered in Medical Design and Outsourcing.
DeviceTalks

DeviceTalks is a conversation among medical technology leaders. It's events, podcasts, webinars and one-on-one exchanges of ideas & insights.

DeviceTalks

New MedTech Resource

Medical Tubing

MassDevice

Mass Device

The Medical Device Business Journal. MassDevice is the leading medical device news business journal telling the stories of the devices that save lives.

Visit Website
MDO ad
Medical Design and Outsourcing
  • MassDevice
  • DeviceTalks
  • MedTech100 Index
  • Medical Tubing + Extrusion
  • Medical Design Sourcing
  • Drug Delivery Business News
  • Drug Discovery & Development
  • Pharmaceutical Processing World
  • R&D World
  • About Us/Contact
  • Advertise With Us
  • Subscribe to Print Magazine
  • Subscribe to our E-Newsletter
  • Listen to our Weekly Podcasts
  • Join our DeviceTalks Tuesdays Discussion

Copyright © 2025 WTWH Media, LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media LLC. Site Map | Privacy Policy | RSS

Search Medical Design & Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Supplies and Components Index
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • MedTech Resources
    • Medtech Events in 2025
    • The 2024 Medtech Big 100
    • Medical Device Handbook
    • MedTech 100 Index
    • Subscribe to Print Magazine
    • DeviceTalks
    • Digital Editions
    • eBooks
    • Educational Assets
    • Manufacturer Search
    • Podcasts
    • Print Subscription
    • Webinars / Digital Events
    • Whitepapers
    • Voices
    • Views
    • Video
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Women in Medtech
  • Advertise
  • Subscribe