Medical Design and Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • Med Tech Resources
    • DeviceTalks Tuesdays
    • Digital Editions
    • eBooks
    • Manufacturer Search
    • Medical Device Handbook
    • MedTech 100 Index
    • Podcasts
    • Print Subscription
    • The Big 100
    • Webinars / Digital Events
    • Whitepapers
    • Video
  • 2022 Leadership in MedTech
    • 2022 Leadership Voting!
    • 2021 Winners
    • 2020 Winners
  • Women in Medtech

Rapid Detection of Sepsis in Infants

February 5, 2014 By youris.com

New detection methods could shorten the detection of sepsis from days down to only a few hours.

Gregor Czilwik, engineer of micro system technology and project manager at research institute HSG-IMIT in Villingen, GermanySepsis is a possibly mortal bacterial infection. It affects neonates and young infants more severely since their immune system is not fully developed. Now scientists are developing a fully automated system, which can identify sepsis in infants within hours instead of days. Such performance in terms of sped is what the EU funded research project ASCMicroPlat hopes to deliver by the time its final tests have been conducted, in 2014. Gregor Czilwik, engineer of micro system technology and project manager at research institute HSG-IMIT in Villingen, Germany, talks to youris.com about how this invention could both save lives and prevent the unnecessary use of antibiotics.

Photos of the Day: The Portable Lab

What does the technology developed during the project consist of?
It is a laboratory on a disc. Within the disc are very fine micro channels running outwards in a kind of star shape. By spinning the disc, we make centrifugal forces push a liquid — in this case a blood serum sample — through the micro channels. Liquids behave totally different in this micro world than in the real world. This is how we can identify what is in the liquid.

How are each of the blood serum samples analyzed in the channels?
We have built-in biochemical reactions which produce a kind of fluorescence light. By analyzing this light we can tell what pathogen or bacteria are in the blood sample. It is up to twenty times faster than the present day methods, which need a blood sample to be cultured and only then analyzed; the whole process can take up to five days.

What are the biggest challenges associated with your work?
The subject itself is very complicated because there is a very low concentration of pathogens in each sample. So we need an extremely sensitive method to detect them. And, of course, we want a fully automated device. All the reagents in the disc must remain stable for a long time. And a laboratory technician should only need to apply a sample to the disc and push a button.

Our final design is more or less finished and we have already seen that we can detect bacteria. At the end of the project we will test the device to attempt to detect sepsis.

How are the tests going to be conducted?
Our project partner Trinity College Dublin has collected about 300 to 400 samples since the beginning of the project. Among those, 30 samples are positive. We will run them through our device and compare the results with the present day methods.

Is that enough?
Well, it is all we have. As a first start this is what we will have to do it with. But let’s face it, our test would, of course, not yet constitute the full clinical validation, at the end of our project.

Is this device about giving the infants treatment sooner, or rather about giving them the right type of medication?
If a doctor has only the slightest suspicion an infant might be suffering from sepsis, they will always get broad spectrum antibiotics immediately. But with ASCMicroPlat you will quickly know if it really is sepsis. After all, sepsis can kill within hours, so even with our very fast method there is no time to waste. And, if sepsis has been detected, you will know what kind of pathogen you are dealing with.

This way, antibiotics will not be administered unnecessarily. And if you do, you can be much more effective, giving exactly the right kind of antibiotic.

Also: Portable Lab Faster than Traditional Laboratories

Related Articles Read More >

CeQur Simplicity
CeQur is launching a discreet, convenient ‘wearable insulin pen’
Blackrock's Utah array is a miniature array of electrodes for sensing brain signals
Blackrock Neurotech and Pitt work on first at-home BCI system for remote trials
Engineer inspecting artificial hip joint parts in quality control department in orthopaedic factory
Deburring and finishing for beautiful, functional medical devices
A Medtronic HVAD pump opened up to show the inner workings
FDA designates new Medtronic HVAD pump implant recall as Class I

DeviceTalks Weekly.

July 1, 2022
Boston Scientific CEO Mike Mahoney on building a corporate culture that drives high growth results
See More >

MDO Digital Edition

Digital Edition

Subscribe to Medical Design & Outsourcing. Bookmark, share and interact with the leading medical design engineering magazine today.

MEDTECH 100 INDEX

Medtech 100 logo
Market Summary > Current Price
The MedTech 100 is a financial index calculated using the BIG100 companies covered in Medical Design and Outsourcing.
DeviceTalks

DeviceTalks is a conversation among medical technology leaders. It's events, podcasts, webinars and one-on-one exchanges of ideas & insights.

DeviceTalks

New MedTech Resource

Medical Tubing

Enewsletter Subscriptions

Enewsletter Subscriptions

MassDevice

Mass Device

The Medical Device Business Journal. MassDevice is the leading medical device news business journal telling the stories of the devices that save lives.

Visit Website
MDO ad
Medical Design and Outsourcing
  • MassDevice
  • DeviceTalks
  • MedTech 100 Index
  • Medical Tubing + Extrusion
  • Drug Delivery Business News
  • Drug Discovery & Development
  • Pharmaceutical Processing World
  • R&D World
  • About Us/Contact
  • Advertise With Us
  • Subscribe to Print Magazine
  • Subscribe to E-newsletter
  • Attend our Monthly Webinars
  • Listen to our Weekly Podcasts
  • Join our DeviceTalks Tuesdays Discussion

Copyright © 2022 WTWH Media, LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media LLC. Site Map | Privacy Policy | RSS

Search Medical Design & Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • Med Tech Resources
    • DeviceTalks Tuesdays
    • Digital Editions
    • eBooks
    • Manufacturer Search
    • Medical Device Handbook
    • MedTech 100 Index
    • Podcasts
    • Print Subscription
    • The Big 100
    • Webinars / Digital Events
    • Whitepapers
    • Video
  • 2022 Leadership in MedTech
    • 2022 Leadership Voting!
    • 2021 Winners
    • 2020 Winners
  • Women in Medtech