Medical Design and Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • Med Tech Resources
    • DeviceTalks Tuesdays
    • Digital Editions
    • eBooks
    • Manufacturer Search
    • Medical Device Handbook
    • MedTech 100 Index
    • Podcasts
    • Print Subscription
    • The Big 100
    • Webinars / Digital Events
    • Whitepapers
    • Video
  • 2022 Leadership in MedTech
    • 2022 Leadership Voting!
    • 2021 Winners
    • 2020 Winners
  • Women in Medtech

Smart Computers

August 21, 2017 By University of Freiburg

In order to achieve better brain signal transmission quality, the researchers apply contact gel. (Credit: Michael Veit)

Filtering information for search engines, acting as an opponent during a board game or recognizing images: Artificial intelligence has far outpaced human intelligence in certain tasks. Several groups from the Freiburg excellence cluster BrainLinks-BrainTools led by neuroscientist private lecturer Dr. Tonio Ball are showing how ideas from computer science could revolutionize brain research. In the scientific journal Human Brain Mapping they illustrate how a self-learning algorithm decodes human brain signals that were measured by an electroencephalogram (EEG). It included performed movements, but also hand and foot movements that were merely thought or an imaginary rotation of objects. Even though the algorithm was not given any characteristics ahead of time, it works as quickly and precisely as traditional systems that have been created to solve certain tasks based on predetermined brain signal characteristics, which are therefore not appropriate for every situation. The demand for such diverse intersections between man and machine is huge: At the University Hospital Freiburg, for instance, it could be used for early detection of epileptic seizures. It could also be used to improve communication possibilities for severely paralyzed patients or an automatic neurological diagnosis.

“Our software is based on brain-inspired models that have proven to be most helpful to decode various natural signals such as phonetic sounds,” says computer scientist Robin Tibor Schirrmeister. The researcher is using it to rewrite methods that the team has used for decoding EEG data: So-called artificial neural networks are the heart of the current project at BrainLinks-BrainTools. “The great thing about the program is we needn’t predetermine any characteristics. The information is processed layer for layer, that is in multiple steps with the help of a non-linear function. The system learns to recognize and differentiate between certain behavioral patterns from various movements as it goes along,” explains Schirrmeister. The model is based on the connections between nerve cells in the human body in which electric signals from synapses are directed from cellular protuberances to the cell’s core and back again. “Theories have been in circulation for decades, but it wasn’t until the emergence of today’s computer processing power that the model has become feasible,” comments Schirrmeister.

Customarily, the model’s precision improves with a large number of processing layers. Up to 31 were used during the study, otherwise known as “Deep Learning”. Up until now, it had been problematic to interpret the network’s circuitry after the learning process had been completed. All algorithmic processes take place in the background and are invisible. That is why the researchers developed the software to create cards from which they could understand the decoding decisions. The researchers can insert new datasets into the system at any time. “Unlike the old method, we are now able to go directly to the raw signals that the EEG records from the brain. Our system is as precise, if not better, than the old one,” says head investigator Tonio Ball, summarizing the study’s research contribution. The technology’s potential has yet to be exhausted – together with his team, the researcher would like to further pursue its development: “Our vision for the future includes self-learning algorithms that can reliably and quickly recognize the user’s various intentions based on their brain signals. In addition, such algorithms could assist neurological diagnoses.”

Related Articles Read More >

DeepWell Digital Therapeutics Mike Wilson Ryan Douglas
How DeepWell is developing video games as tools for treating medical conditions
A woman with a small, handheld device in her lap with tubes that look like earphones plugged into her ears.
Ear-puffing device for migraine treatment wins FDA breakthrough designation
Abbott
Abbott launches upgraded digital health app for neurostimulation
Catheter delivery could enable better brain implants: Synchron’s neuroscience chief explains how

DeviceTalks Weekly.

May 20, 2022
DeviceTalks Boston Post-Game – Editors’ Top Moments, Insulet’s Eric Benjamin on future of Omnipod 5
See More >

MDO Digital Edition

Digital Edition

Subscribe to Medical Design & Outsourcing. Bookmark, share and interact with the leading medical design engineering magazine today.

MEDTECH 100 INDEX

Medtech 100 logo
Market Summary > Current Price
The MedTech 100 is a financial index calculated using the BIG100 companies covered in Medical Design and Outsourcing.
DeviceTalks

DeviceTalks is a conversation among medical technology leaders. It's events, podcasts, webinars and one-on-one exchanges of ideas & insights.

DeviceTalks

New MedTech Resource

Medical Tubing

Enewsletter Subscriptions

Enewsletter Subscriptions

MassDevice

Mass Device

The Medical Device Business Journal. MassDevice is the leading medical device news business journal telling the stories of the devices that save lives.

Visit Website
MDO ad
Medical Design and Outsourcing
  • MassDevice
  • DeviceTalks
  • MedTech 100 Index
  • Medical Tubing + Extrusion
  • Drug Delivery Business News
  • Drug Discovery & Development
  • Pharmaceutical Processing World
  • R&D World
  • About Us/Contact
  • Advertise With Us
  • Subscribe to Print Magazine
  • Subscribe to E-newsletter
  • Attend our Monthly Webinars
  • Listen to our Weekly Podcasts
  • Join our DeviceTalks Tuesdays Discussion

Copyright © 2022 WTWH Media, LLC. All Rights Reserved. Site Map | Privacy Policy | RSS

Search Medical Design & Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • Med Tech Resources
    • DeviceTalks Tuesdays
    • Digital Editions
    • eBooks
    • Manufacturer Search
    • Medical Device Handbook
    • MedTech 100 Index
    • Podcasts
    • Print Subscription
    • The Big 100
    • Webinars / Digital Events
    • Whitepapers
    • Video
  • 2022 Leadership in MedTech
    • 2022 Leadership Voting!
    • 2021 Winners
    • 2020 Winners
  • Women in Medtech