Medical Design and Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • Med Tech Resources
    • DeviceTalks Tuesdays
    • Digital Editions
    • eBooks
    • Manufacturer Search
    • Medical Device Handbook
    • MedTech 100 Index
    • Podcasts
    • Print Subscription
    • The Big 100
    • Webinars / Digital Events
    • Whitepapers
    • Video
  • 2022 Leadership in MedTech
    • 2022 Leadership Voting!
    • 2021 Winners
    • 2020 Winners
  • Women in Medtech

Student Develops 3D Phantom Head for MR Research

October 1, 2018 By University of Pittsburgh

Phantoms are not just ghostly figures of our imagination, they are also numerical or physical models that represent human characteristics and provide an inexpensive way to test electromagnetic applications. Sossena Wood, a bioengineering PhD candidate at the University of Pittsburgh, has developed a realistic phantom head for magnetic resonance research in the Swanson School of Engineering.

Wood started her tenure at Pitt as an undergraduate student in the Department of Electrical and Computer Engineering where she met Tamer Ibrahim, an associate professor of bioengineering. She began research in his lab, the Radiofrequency (RF) Research Facility, during her senior year and is now finishing her dissertation incorporating similar research as a graduate student in the Department of Bioengineering.

Ibrahim envisioned designing a 3D printed phantom head to use with the uniquely designed ultrahigh field technology in his lab. “In the RF Research Facility, we use a whole-body 7 Tesla magnetic resonance imager (7T MRI), which is one of the strongest clinical human MRI devices in the world,” said Ibrahim. 7T ultrahigh field technology is a powerful tool, but unfortunately, there are a few setbacks that come with this type of imaging.

“As you move from lower to higher fields, the images produced become less uniform and localized heating becomes more prevalent,” explained Ibrahim. “We wanted to develop an anthropomorphic phantom head to help us better understand these issues by providing a safer way to test the imaging. We use the device to analyze, evaluate, and calibrate the MRI systems and instrumentation before testing new protocols on human subjects.”

Researchers are currently using numerical simulations to study the effect of electromagnetic (EM) fields on biological tissues at varying frequencies. Wood said, “EM numerical modeling has been a standard when analyzing these interactions, and we wanted to create a phantom that resembled the human form for use in validating the EM modeling, thereby providing a more realistic environment for testing.”

Before Wood could print the 3D structure, she had to do computational work to build the digital blueprint for the model. She started with a 3T MRI dataset of a healthy male, which she characterized by segmentation and broke into eight tissue compartments, a feature that differentiates her model from other basic phantom heads. According to Wood, these compartments help improve image accuracy by acting as a sort of “speed bump” for the field.

After the computational preparations, Wood used an MRI scanner to produce a 3D-digital image of healthy male’s head and ran her model through computer-aided design, which is software used to create, modify, analyze, and optimize a design.

The next step was to print the prototype, which took three semesters to complete. “We used a plastic developed by DSM Somos® for our printing material because it allowed us to create durable and detailed parts with a similar conductivity to the human body,” said Wood. “To help the model further mimic a real environment, we created filling ports on the prototype where we can deposit fluids that resemble various tissue types.”

Now that Wood has a fully printed anthropomorphic phantom head, she is able to assemble it and begin testing. The phantom has many applications including testing to see if certain implants are able to go inside of an MRI or detecting the temperature rise in different tissues based on various RF instrumentation.

“With MR imaging, the power from the RF exposure is transformed into heat in the patient’s tissue, which can have detrimental effects on the patient’s health, especially with implants if not monitored by the scanner” explained Wood. “With our phantom head, we can test the safety of our imaging by putting probes inside of certain regions of the head and measuring the effects,” said Ibrahim.

Ibrahim and Wood hope that this model will eventually be developed commercially and provide others with the ability to pursue research without relying on human testing.

Related Articles Read More >

CeQur Simplicity
CeQur is launching a discreet, convenient ‘wearable insulin pen’
Blackrock's Utah array is a miniature array of electrodes for sensing brain signals
Blackrock Neurotech and Pitt work on first at-home BCI system for remote trials
Engineer inspecting artificial hip joint parts in quality control department in orthopaedic factory
Deburring and finishing for beautiful, functional medical devices
A Medtronic HVAD pump opened up to show the inner workings
FDA designates new Medtronic HVAD pump implant recall as Class I

DeviceTalks Weekly.

July 1, 2022
Boston Scientific CEO Mike Mahoney on building a corporate culture that drives high growth results
See More >

MDO Digital Edition

Digital Edition

Subscribe to Medical Design & Outsourcing. Bookmark, share and interact with the leading medical design engineering magazine today.

MEDTECH 100 INDEX

Medtech 100 logo
Market Summary > Current Price
The MedTech 100 is a financial index calculated using the BIG100 companies covered in Medical Design and Outsourcing.
DeviceTalks

DeviceTalks is a conversation among medical technology leaders. It's events, podcasts, webinars and one-on-one exchanges of ideas & insights.

DeviceTalks

New MedTech Resource

Medical Tubing

Enewsletter Subscriptions

Enewsletter Subscriptions

MassDevice

Mass Device

The Medical Device Business Journal. MassDevice is the leading medical device news business journal telling the stories of the devices that save lives.

Visit Website
MDO ad
Medical Design and Outsourcing
  • MassDevice
  • DeviceTalks
  • MedTech 100 Index
  • Medical Tubing + Extrusion
  • Drug Delivery Business News
  • Drug Discovery & Development
  • Pharmaceutical Processing World
  • R&D World
  • About Us/Contact
  • Advertise With Us
  • Subscribe to Print Magazine
  • Subscribe to E-newsletter
  • Attend our Monthly Webinars
  • Listen to our Weekly Podcasts
  • Join our DeviceTalks Tuesdays Discussion

Copyright © 2022 WTWH Media, LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media LLC. Site Map | Privacy Policy | RSS

Search Medical Design & Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • Med Tech Resources
    • DeviceTalks Tuesdays
    • Digital Editions
    • eBooks
    • Manufacturer Search
    • Medical Device Handbook
    • MedTech 100 Index
    • Podcasts
    • Print Subscription
    • The Big 100
    • Webinars / Digital Events
    • Whitepapers
    • Video
  • 2022 Leadership in MedTech
    • 2022 Leadership Voting!
    • 2021 Winners
    • 2020 Winners
  • Women in Medtech