Medical Design and Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Supplies and Components Index
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • MedTech Resources
    • Medtech Events in 2025
    • The 2024 Medtech Big 100
    • Medical Device Handbook
    • MedTech 100 Index
    • Subscribe to Print Magazine
    • DeviceTalks
    • Digital Editions
    • eBooks
    • Manufacturer Search
    • Podcasts
    • Print Subscription
    • Webinars / Digital Events
    • Whitepapers
    • Voices
    • Video
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Women in Medtech
  • Advertise
  • Subscribe

The Highs And Lows Of Regenerative Medicine

November 8, 2016 By Phys.org

Figure: Cellular characteristics and activities that may be influenced by the interaction between cells and nanoscale topographies. (Credit: National Institute for Materials Science).

Nanoscale manipulation on the surface of materials could stimulate cells to differentiate into specific tissues – eliminating the use of growth or transcription factors.

Researchers are trying to find ways to control cellular response in vitro using engineered materials in a continuous pursuit to regenerate injured or diseased tissues. Recent studies have found that nanoscale structure of the materials, on which such cells are cultured, affect how well they proliferate and develop into the tissues they are meant to become.

Scientists from the University of Malaya in Malaysia, Dr. Belinda Pingguan-Murphy et al., together with Prof. Sheikh Ali Akbar of Ohio State University, reviewed the most recent research on how the nanoscale topographies affect cellular regenerative responses.

For example, human fetal osteoblast cells that are involved in bone formation were found to grow better on materials that had tiny protrusions on their surfaces (11 nanometers in height) compared to surfaces that were either flat or had higher protrusions. They also attached better to surfaces with nanosized pits that were 14 nm or 29 nm deep compared to flat surfaces and surfaces with pits that were 45 nm deep.

Research has also found that the distance between pits or protrusions and whether they are random or highly ordered also affect how osteoblasts and stem cells respond. Additionally, nanoscale grooved surfaces trigger these cells to grow in the direction of the grooves.

Generally, when a material is exposed to a biological fluid, water molecules bind rapidly to the surface followed by the incorporation of chloride and sodium ions. Proteins then adsorb to this surface. The resulting mixture of proteins, as well as their three-dimensional shape and orientation with respect to the surface topography, sends signals to the cells influencing their attachment and spreading.

Further research in this area may lead to the development of clinical prostheses with topographies that can directly modulate stem cell fate, enabling cell growth and development to be tailored to a specific application without using potentially harmful chemicals, write the researchers in their review published in the journal of Science and Technology of Advanced Materials. However, developing low-cost, high-output fabrication techniques that allow for the development of specific nano-topographies is still a limiting factor.

Related Articles Read More >

Nanoscopic imaging showing human keratinocyte-matrix interaction.
These smart materials are key to advancing regenerative medicine
A series of before-and-after brain scans showing improvement in long COVID patients after hyperbaric oxygen therapy
Long COVID study finds potential in hyperbaric oxygen therapy
Rockwell Experience Center opens at Dean Kamen’s Advanced Regenerative Manufacturing Institute
What is microscale 3D printing? Lessons learned from Mayo Clinic
“mdo
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest medical device business news, application and technology trends.

DeviceTalks Weekly

See More >

MDO Digital Edition

Digital Edition

Subscribe to Medical Design & Outsourcing. Bookmark, share and interact with the leading medical design engineering magazine today.

MEDTECH 100 INDEX

Medtech 100 logo
Market Summary > Current Price
The MedTech 100 is a financial index calculated using the BIG100 companies covered in Medical Design and Outsourcing.
DeviceTalks

DeviceTalks is a conversation among medical technology leaders. It's events, podcasts, webinars and one-on-one exchanges of ideas & insights.

DeviceTalks

New MedTech Resource

Medical Tubing

MassDevice

Mass Device

The Medical Device Business Journal. MassDevice is the leading medical device news business journal telling the stories of the devices that save lives.

Visit Website
MDO ad
Medical Design and Outsourcing
  • MassDevice
  • DeviceTalks
  • MedTech100 Index
  • Medical Tubing + Extrusion
  • Medical Design Sourcing
  • Drug Delivery Business News
  • Drug Discovery & Development
  • Pharmaceutical Processing World
  • R&D World
  • About Us/Contact
  • Advertise With Us
  • Subscribe to Print Magazine
  • Subscribe to our E-Newsletter
  • Listen to our Weekly Podcasts
  • Join our DeviceTalks Tuesdays Discussion

Copyright © 2025 WTWH Media, LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media LLC. Site Map | Privacy Policy | RSS

Search Medical Design & Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Supplies and Components Index
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • MedTech Resources
    • Medtech Events in 2025
    • The 2024 Medtech Big 100
    • Medical Device Handbook
    • MedTech 100 Index
    • Subscribe to Print Magazine
    • DeviceTalks
    • Digital Editions
    • eBooks
    • Manufacturer Search
    • Podcasts
    • Print Subscription
    • Webinars / Digital Events
    • Whitepapers
    • Voices
    • Video
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Women in Medtech
  • Advertise
  • Subscribe